1 2 3 Previous Next

Green Chemistry: The Nexus Blog

530 posts

HandaLipshutz.pngProfessors Bruce Lipshutz, Ph.D., Professor of Chemistry and Biochemistry, University of California – Santa Barbara, and Sachin Handa, Ph.D., Assistant Professor of Chemistry at the University of Louisville, have been awarded the Peter J. Dunn Award for Green Chemistry and Engineering Impact in the Pharmaceutical Industry.

 

Lipshutz and Handa have developed newly engineered catalysts for sustainable surfactant chemistry in water. They have demonstrated the use of nanomicelles and nanocatalysis to successfully carry out reactions of great relevance and that are commonly used in the pharmaceutical industry. The use of a water-based system coupled with a significant reduction in the use of platinum group metals resulted in significant sustainability advantages for the industry.

 

The winners will be honored during a symposium at the 22nd Annual Green Chemistry and Engineering Conference to be held on June 18-20, 2018, in Portland, Oregon.

 

The Peter J. Dunn Award was established in 2016 by the ACS GCI Pharmaceutical Roundtable. The award recognizes outstanding industrial implementation of novel green chemistry and/or engineering in the pharmaceutical industry that demonstrates compelling environmental, safety, cost and/or efficiency improvements over current technologies.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Malka Doshi, Green Relations Officer, Green ChemisTree Foundation

 

The ACS Green Chemistry Institute is once again partnering with the Green ChemisTree Foundation, India for the 5th Industrial Green Chemistry World (IGCW-2017) Convention and Ecosystem, scheduled on October 5-6, 2017 in Mumbai, India.

 

The IGCW Convention series is uniquely designed around the central theme of Profitability from Industrial Green Chemistry and Engineering. Since 2009, four biennial IGCW Conventions have seen a growing number of industry stakeholders of both national and international repute converge in Mumbai.

 

The IGCW ecosystem brings together key stakeholders in the Indian chemical industry – including senior government officials, chief decision-makers from industry, green chemistry and engineering experts, solution-providers, and research organizations – on a common platform with a single agenda to accelerate the implementation of green chemistry and engineering practices in India.

 

The 5th IGCW-2017 marks the completion of the “GC&E Awareness phase” in India and propels the start of the “GC&E Implementation phase.” In this broader context, IGCW-2017 has expanded its scope and structure to incorporate subject-specific themes across the two-day convention that will be explored during the nine following concurrent events:

 

Convention and Ecosystem.jpg

  • The IGCW Symposium showcases the IGCW Convention & Ecosystem’s mission by bringing together the world’s best industrial practices and success stories on green chemistry and engineering.

  • The SERB-IGCW Awards collaborate with the Department of Science & Technology of the Government of India to highlight outstanding initiatives in green chemistry and engineering  launched by industry, start–ups, and the knowledge community.

  • The IGCW-EXPO will bring together 40+ technology providers from all over the globe that offer green chemistry and engineering solutions needs of  the Indian chemical industry.

  • The IGCW-PCB Conference will feature talks by senior representatives of the State and Central Pollution Control Boards to explore their roles in the implementation of green chemistry and engineering practices to facilitate pollution prevention.

  • The IGCW-FSC Flow Chemistry Workshop seeks to expand awareness and understanding of flow chemistry technologies and their applications.

  • IGCW-GC&E Emerging Tools & Technologies is integrated into the IGCW ecosystem with the objective to provide a platform for participating companies to gain a first-hand understanding of emerging tools and technologies with respect to their  green chemistry and engineering applications.

  • The ACS GCI Pharmaceutical Roundtable (GCIPR) Workshop on Solvent & Reagent Selection Guide will be conducted by experts from the ACS GCI Pharmaceutical Roundtable (GCIPR), focused on accessing the solvent and reagent selection guide and other green chemistry and engineering tools as developed and used by GCIPR member companies.

  • The IGCW 1800 seminars are subject-specific seminars on relevant topics related to the industrialization of green chemistry and engineering applications. The selected topics are: Green Processes, Green Catalysts, Green Solvents & Green Engineering.

  • The IGCW CSIR Industry Workshops  will connect the Council of Scientific & Industrial Research (CSIR) Lab’s green-chemistry-and-engineering-related projects to senior representatives in the chemical industry. CSIR scientists will share success stories, present potential collaborative models, and showcase subject-specific competencies.

 

For more details on IGCW-2017, or to learn how you can get involved, please email connect@industrialgreenchem.com.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Despite the wide variety of chemistry conducted as part of drug discovery and development and the undoubted ingenuity of the chemists conducting the research, the majority of reactions still fall into a relatively small number of categories.

 

With this in mind, chemists in the industry have previously sought[i],[ii] to offer guidance that both encourages chemists to use greener reagents by first intent and provides a simple, easy-to-use reference for greener alternatives to be considered when reactions are repeated and/or scaled up.

 

More recently, the ACS GCI Pharmaceutical Roundtable has brought together contributions from multiple pharmaceutical companies to provide a more comprehensive set of reagent guides that you can find at http://www.reagentguides.com/.

 

Guides are freely available for 11 transformations: oxidation to aldehyde and ketones, nitro reduction, N-alkylation, O-dealkylation, ester deprotection, epoxidation, Boc deprotection, amide reduction, bromination, reductive amination, and metals removal.

 

Additional guides on Buchwald-Hartwig amination, iodination and chlorination are currently only available to members of the Pharmaceutical Roundtable, but are scheduled to be rolled out to a wider audience soon. The Roundtable will be developing and releasing additional guides over time.

 

A tutorial on the guides is available here: https://youtu.be/w05iq4VcPts

 

venn-large.pngEach circle of the Venn diagram represents a different criterion –  those being ‘scalability,’ ‘greenness’ and ‘wide utility.’

 

The ideal reagent will have all three characteristics and appear in the middle (green area) of the Venn diagram, whereas some reagents have one of the traits but none of the others or a mix of two but not the third.

 

Placement within the Venn diagram can change with many variables, including solvent, catalyst, treatment of wastes, etc.

 

Good green chemistry requires the chemist to look across a range of factors before making the best choice. With the inclusion of information like atom efficiency, ecotoxicology/toxicology profiles, safety issues, waste products, sustainable feedstocks and more, we hope these guides give promotion to some reagents as compared to others. A  holistic approach is encouraged, however. For example, if a ‘greener’ reagent gives a much lower yield or requires multiple steps, the overall benefit may be outweighed (i.e., it may give rise to a higher footprint in the wider context) compared to an initially less ‘green’ reagent.

 

DISCLAIMER

The American Chemical Society Green Chemistry Institute’s Pharmaceutical Roundtable (“the Roundtable”) has created this Reagent Guide to inform and guide users toward greener reagents for various chemical transformations. The Roundtable has used reasonable efforts in collecting, preparing and providing quality information and material, but does not warrant or guarantee the accuracy, completeness, adequacy or currency of the information contained in the Reagent Guide. By downloading, viewing and utilizing information from the Reagent Guide, visitors assume full responsibility for their own actions and any damages or liabilities that may result from the utilization of information obtained from the Reagent Guide. Should you have any questions or comments about the Reagent Guide or this disclaimer, please send an e-mail to gcipr@acs.org.

 


[i] Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation

K. Alfonsi, J. Colberg, P. J. Dunn,* T. Fevig, S. Jennings, T. A. Johnson, H. P. Kleine, C. Knight, M. A. Nagy, D. A. Perry*, M. Stefaniak. Green Chem. 2008, 10, 31–36.

 

[ii] Development of GSK’s Reagent Guides – Embedding Sustainability into Reagent Selection

J. P. Adams, C. M. Alder, I. Andrews, A. M. Bullion, M. Campbell-Crawford, M. G. Darcy, J. D. Hayler, R. K. Henderson, C. A. Oare, I. Pendrak, A. M. Redman, L. E. Shuster, H. F. Sneddon,* M. D. Walker. Green Chem. 2013, 15, 1542-1549.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Mary M. Kirchhoff, Ph.D., Director, ACS Green Chemistry Institute®; Executive Vice President of Scientific Advancement, ACS

 

Summer is always a busy season for the ACS Green Chemistry Institute® (GCI), and this year was no exception. My colleagues and I enjoyed seeing so many of you in June at the 21st Annual Green Chemistry & Engineering Conference. Your feedback on the technical symposia, networking events and poster sessions in Reston are already helping to shape next year’s conference, which is being chaired by Julie Haack from the University of Oregon and Richard Blackburn from the University of Leeds. The 22nd Annual Green Chemistry & Engineering Conference will be returning to Portland, Oregon from June 18-20, 2018.

 

The Summer School on Green Chemistry and Sustainable Energy was held the week following the conference at the Colorado School of Mines. Fifty-three graduate students and postdoctoral scholars from the U.S., Canada and Latin America participated in the week-long program. Participants presented their research during poster sessions, engaged in lectures on specific topics in green chemistry and sustainable energy, and conducted a modified Life Cycle Analysis to determine the “greenest” pathway toward a target molecule. Presentations on careers, publishing, and proposal writing rounded out the week – along with a white water rafting trip.  The program is supported by a generous grant from the ACS Petroleum Research Fund.

 

I was thrilled to attend last month’s Green & Sustainable Chemistry (GSC-8) Conference in Melbourne, Australia. The conference was part of the Royal Australian Chemical Institute’s Centenary Congress, an event that encompassed nine conferences and engaged approximately 3,500 attendees, making it the largest chemistry conference ever held in Australia! The GSC-8 Conference was highly international, with plenary talks delivered by scientists from Australia, Canada, China, Israel, Japan, the UK and the US. I am delighted that the next Green and Sustainable Chemistry Conference (GSC-9) will be held in 2019 in conjunction with the 23rd Annual Green Chemistry & Engineering Conference in Reston, Virginia.

 

We are now finalizing preparations for the ACS National Meeting, which begins in Washington, D.C., this week. Numerous symposia feature green chemistry talks, and I encourage you search the program by topic (green chemistry) to identify symposia of interest to you. We look forward to seeing you in Washington over the coming week!

 

mary-sig.png

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Samy Ponnusamy, Ph.D., Fellow, Green Chemistry, MilliporeSigma; and Jeffrey Whitford, Head of Corporate Responsibility and Branding, MilliporeSigma

 

Picture1.pngSummary: MilliporeSigma created a unique, web-based greener alternative scoring matrix, also known as DOZN: a quantitative green chemistry evaluator based on the 12 principles of green chemistry. The 12 principles of green chemistry provide a framework for learning about green chemistry and designing or improving materials, products, processes and systems. DOZN scores products based on metrics for each principle and aggregates the principle scores to derive a final aggregate score. The system calculates scores based on manufacturing inputs, Globally Harmonized System (GHS) and Safety Data Sheet (SDS) information, which provide a green score for each substance. DOZN is flexible enough to encompass the diverse portfolio of products, ranging from chemistry to biology-based products. The DOZN system has also been verified and validated by a third party to ensure best practices are applied, and a peer reviewed paper has been published on it recently. This new greener chemistry initiative offers customers an increased breadth of greener alternative products with confirmatory documentation to validate greener characteristics.

 

Introduction: Green chemistry is the concept of developing chemical products and processes that minimize the use and generation of hazardous substances, reduce waste, and reduce demand on diminishing resources. Paul Anastas and John Warner developed the foundation that has served as the global framework of green chemistry. That framework proposes 12 complementary principles around resource efficiency and risk (human health and environmental) minimization and targeting a life-cycle perspective (e.g., raw materials extraction, chemical production, and end-of-life bioaccumulation and biodegradation). Ultimately, these 12 principles were adopted by American Chemical Society (ACS) Green Chemistry Institute (GCI).

 

The 12 principles are only conceptual and do not provide a quantitative framework. While various approaches to quantifying greener processes and products have been proposed, there is no unifying set of metrics in place. After a review of the current state of green chemistry methods, MilliporeSigma developed DOZN, a quantitative green chemistry evaluator, and leveraged generally accepted industry practices.

 

Quantitative Green Chemistry Evaluator:

 

The design objectives developed by MilliporeSigma industrial chemists included the following:

 

  1. Allow for direct comparison between alternative chemicals considered for the same application as well as direct comparison between alternative synthesis manufacturing processes considered for the same chemical product.
  2. Allow transparent comparison against each of the 12 principles and for each of the three major stewardship categories: resource efficiency, human health and environmental hazard, and energy use.
  3. Provide sufficient flexibility to apply to the diverse product portfolio.
  4. Be inexpensive to implement by utilizing readily available data.
  5. Be based on generally accepted industry practices when available.
  6. Be easy to communicate the method and results to customers.

 

Considering these guiding elements, we investigated and designed an approach to evaluate and score chemical products and processes on each of the 12 principles.

 

Categories: DOZN groups the 12 principles into like categories, allowing for a focus on overarching green chemistry categories of hazard, resource use and energy efficiency. These category groupings and scores are shown in Table 1:

  • Improved resource use
  • Increased energy efficiency
  • Reduced human and environmental hazards

 

Greener Alternatives Example Results:

 

Table 1

Category and Related Principles

Old

1-Aminobenzotriazole Process

Re-engineered –

1-Aminobenzotriazole Process

Principle Score

Principle Score

Improved Resource Use

Principle 1: Prevention

2701

1042

Principle 2: Atom Economy

933

345

Principle 7: Use of Renewable Feedstock

933

345

Principle 8: Reduce Derivatives

0.0

0.0

Principle 9: Catalysis

0.5

1.0

Principle 11: Real-Time Analysis for Pollution Prevention

1.0

1.0

Increased Energy Efficiency

Principle 6: Design for Energy Efficiency

3282

1322

Reduced Human and Environmental Hazards

Principle 3: Less Hazardous Chemical Synthesis

3358

1455

Principle 4: Designing Safer Chemicals

5.0

5.0

Principle 5: Safer Solvents and Auxiliaries

2245

1252

Principle 10: Design for Degradation

0.0

0.0

Principle 12: Inherently Safer Chemistry for Accident Prevention

2516

220

Aggregate Score*

100

44

*Aggregate Score is calculated by averaging each category’s scores and summing three category scores to get the single score. Then this will be further normalized (divided by 50) to get an aggregate score from zero to 100 scales (zero being the most desired).

 

The GCM is advantageous over existing approaches because it provides metrics that are (1) inexpensive to implement with readily available data, (2) based on generally accepted industry practices when available, and (3) easy to communicate, both method and results, to customers. Sustainability programs that implement the proposed approach should anticipate the following benefits:

  • Measurement: Ability to use on-hand data sources or establish straightforward data collection programs
  • Calculations: Ability to utilize well-defined metrics to calculate the benefits of the 12 principles of green chemistry
  • Communication: Ability to transparently communicate greener alternatives to customers

 

Based on the feedback from customers, MilliporeSigma is currently working on expanding DOZNsystem (DOZN2.0) so customers can screen their products/processes to get DOZN scores. This would help our customers select the greener products for their research/manufacturing to promote sustainability.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Juan Colberg, Green Chemistry Leader/Senior Director of Chemical Technology, Pfizer; Javier Magano, Principal Scientist, Pfizer; and John Wong, Research Fellow, Pfizer

 

2012 marked the 10-year anniversary of Pfizer’s Green Chemistry Program, a program that focuses on education, innovation, solvent and waste reductions, the use of safer chemistry, greener processes, cost savings, and colleague engagement. Now, five years on from the 10-year anniversary, our Green Chemistry Program continues to promote, internally and externally, the selection and use of environmentally preferable chemicals, eliminating waste and conserving energy in our chemical processes.

 

As Pfizer’s portfolio evolves, so does its Green Chemistry Program. Efforts are not narrowly focused on small molecules for the Pfizer Innovative Health portfolio, but broadly include Biopharma and the Essential Health portfolios as well. An important part of the program’s success has been the commitment from Pfizer to provide and support the creation of ways to share knowledge, best practices and techniques across the organization, as well as educating future chemists and engineers in colleges and universities.

 

As part of these efforts, we have engaged our internal and external communities with a series of educational workshops to promote the application of green chemistry principles and the use of more environmentally sustainable technologies and approaches.

 

Green Chemistry Workshops at Pfizer

 

Education is one of the key elements of Pfizer’s Green Chemistry Program. Recognizing the importance of green chemistry education, Pfizer has hosted or participated in at least one workshop annually beginning in 2003.

 

From 2003 to 2006, workshops were held at the Pfizer R&D site in Groton, Connecticut. These workshops, titled “Sustainable Chemistry in the Pharmaceutical Industry,” began with a reception and dinner on the first day and featured a keynote address. The second day was a full day featuring presentations and interactive breakout sessions.

 

John Warner was an important participant in these workshops and presented “The 12 Principles of Green Chemistry: From Philosophy to the Flask.” Pfizer colleagues gave presentations on various topics involving the application of green chemistry in the development of Pfizer drugs. The breakout sessions gave students the opportunity to apply their knowledge of green chemistry to case studies based on Pfizer drugs. For instance, the case studies presented during the breakout sessions in 2004 were based on sertraline and sildenafil, the active pharmaceutical ingredients in Zoloft® and Viagra® respectively.

 

Participants in the workshops were selected from colleges and universities in the Northeast. Participation in 2004 was similar to the other years in which this workshop was conducted and included 28 students from 13 institutions in six states (Connecticut: Connecticut College, UCONN, University of St. Joseph; Massachusetts: Bridgewater State, UMASS Amherst, UMASS Boston, Gordon College, Simmons College, Suffolk University, Worcester Polytechnic Institute; New Hampshire: University of New Hampshire; Rhode Island: University of Rhode Island; Vermont: University of Vermont). Overall, these workshops hosted at the Pfizer R&D site in Groton were well received based on feedback from students. Notably, two participants from the 2004 workshop became Pfizer colleagues.

 

Picture4.png

Pfizer has also promoted green chemistry education outreach activities in other sites across the U.S. and Europe.

 

Workshop on Wheels (WOW)

 

With the great success of the Pfizer green chemistry workshops hosted in Groton, we decided to expand the program by engaging faculty members and reaching students from a broader range of disciplines. In 2007, the Groton Green Chemistry Team conceived the “Workshop on Wheels (WOW),”in which the workshop was set to be conducted at a college or university with a small team of Pfizer colleagues. An important element of “WOW” was the active engagement of faculty and students in organizing and conducting these workshops.

 

The first “WOW” was held at the University of Puerto Rico in 2007, hosted by Professor Ingrid Montes (currently Director-at-Large, ACS Board of Directors), followed by one in UCONN hosted by Professor Amy Howell. Since 2007, Pfizer has partnered with nine institutions (Boston University, Harvard University, Northeastern University, UMASS Boston, University of Rhode Island, Wesleyan Univeristy, Worcester Polytechnic, and Yale University) to bring “WOW” to their campuses. The “WOW” held at UMASS Boston in 2016 is the subject of a previous Nexus article.

 

Pfizer remains committed to green chemistry education and is planning a return trip to University of Rhode Island for its 2017 “WOW,” hosted by Professor Brenton DeBoef.

 

Workshop Focus Shifting to New, Greener Technologies

 

While the format of Pfizer’s green chemistry workshops has remained consistent, with presentations by Pfizer colleagues and invited speakers as well as an interactive breakout session, the focus of the topics has shifted from a basic application of the 12 Principles to applications of novel, greener technologies.

 

Thus, the last few years have seen the development of a number of talks by green chemistry team colleagues that cover diverse and increasingly important areas of chemistry, leading to more environmentally benign processes that have become some of the workshop attendees’ favorite topics.

 

  • Biocatalysis: The use of enzymes in drug manufacturing has seen a resurgence in recent years thanks to enzyme engineering, resulting in highly-active and versatile biocatalysts that enable highly efficient processes. In addition, due to the chiral nature of enzymes, these catalysts are particularly well-suited for the generation of chiral centers in the products, which is of special interest in the pharmaceutical industry. A great example that is analyzed by the attendees of the “WOW”breakout sessions is a route to pregabalin (LyricaTM), in which the enzyme is used to resolve a diester. This then allows for the separation of the compound with the desired chirality leading to pregabalin, whereas the compound with undesired stereochemistry undergoes racemization and can be recycled and fed back into the process with the consequent improvements in yield and waste reduction. Another outstanding example of biocatalysis application that is presented is the synthesis of the side chain of statins, such as Lipitor, which replaced the original reduction to generate a stereocenter using toxic and pyrophoric chemicals.

  • Flow chemistry: Most of the current processes under development or at the commercial stage in the pharmaceutical industry are run in batch mode. One reason for this is familiarity – process chemists are more familiar with batch processing and the large investment made over years in the existing batch process infrastructure at pharmaceutical plants. However, it is becoming increasingly evident that processes on flow have many advantages over batch mode, including improved safety when dealing with unstable reagents, smaller investments in equipment, lower solvent consumption, and efficient heat removal from exothermic reactions. Pfizer, as well as other pharmaceutical companies and academic institutions, is investing heavily in this technology as a way to manufacture drugs “on-demand” to reduce cost and improve carbon footprint.

  • Catalysis using non-precious metals: Catalysis is one of the 12 Principles of Green Chemistry and is frequently used in the synthesis of drug candidates. Unfortunately, most of the metals currently used in catalysis are precious metals, such as palladium, iridium, rhodium, platinum and ruthenium. Besides cost, a concern related to the use of these metals is their toxicity, which requires extensive purification protocol to bring levels down to acceptable values with the concomitant increase in waste, as well as their long-term supply due to their scarcity in the Earth’s crust.

    Pfizer, as part of an alliance with other pharmaceutical companies, has embarked in an ambitious program to replace those precious metals with more sustainable alternatives, such as iron, nickel and copper. These three metals are abundant, inexpensive, and display lower toxicity than precious metal catalysts, which contribute to turning catalysis into an even more attractive technology for the synthesis of drug candidates.

    Pfizer colleagues have discussed this topic during their presentations at “WOW” by showing examples from literature and comparing advantages and drawbacks for the use of these metals. Though there is still a long way to go in replacing precious metals altogether with greener alternatives, progress is being made almost daily in both academia and industry, and theses presentations intend to inform the audience about the rewards of employing iron, nickel and copper in catalytic processes and the long-term risks of not further investing now in those technologies.

 

Passion for green chemistry continues to be the driver for so many Pfizer colleagues around the world to support these types of activities – passion that has continued growing across all these years since the program’s creation.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

This article was originally published on VentureWell's blog.

 

shutterstock_49448494-910x620.jpgGreen chemistry is evolving to respond to a host of health and environmental challenges. Like most complex social issues, future science and technology professionals and entrepreneurs will be charged with addressing these problems through innovation. They will have their work cut out for them, but there will be tremendous demand for their solutions.

 

According to Pike Research, green chemistry represents a market opportunity that will soar to nearly $100 billion by 2020. But will industry be prepared to meet this opportunity? Are tomorrow’s scientists equipped with an understanding of green chemistry principles? We spoke with John Warner, one of the founders of the green chemistry field, about the competitive advantage chemistry students will have in industry, and how universities can better prepare graduates to meet the increasing demand for the discipline.

 

Can you illustrate the demand for green chemists in industry?

 

I started a green chemistry program at the University of Massachusetts. It had everything you would find in a normal chemistry program but I added several one-semester classes including mechanistic toxicology and environmental mechanisms. During my time at UMASS, about 120 students at various levels –  undergrad and grad – worked in my labs. The average time it took one of those students to get a job in industry was only two days. The longest it took a student to secure a job was two weeks–and that’s because she turned down the first six job offers. Companies continue to ask if I know of any graduating green chemists.

 

From your perspective, how can faculty and universities respond to this increased demand for green chemists?

 

The simple answer is to add green chemistry to the curriculum in some way: a stand-alone class, a lab, or some other way to share best practices.

 

There also needs to be a shift in mindset. Historically, chemists were taught to develop ways to contain, control and limit the amount of toxic chemicals emitting from reactors and products. They didn’t consider making safer materials. They believed that chemistry was inherently dangerous. The curriculum needs to think about chemistry through a sustainable lens. It should focus more on what makes molecules and materials dangerous, and less on how to limit the exposure to dangerous things.

 

There’s also an opportunity to find more overlap and interaction between different disciplines such as toxicology and environmental health sciences. For decades people have been learning what makes molecules and materials hazardous. There are countless textbooks written. There are conferences where practitioners share ideas and research. However, each discipline rarely interacts. They don’t even really share the same language. Yet it’s the overlap of these two sciences that define green chemistry. More integration between disciplines means more opportunities to bridge the gap between chemistry, hazard and design.

 

What are some immediate needs for green chemists in industry?

 

There is a great disconnect between true sustainability and design. The design community is often tasked with developing sustainable products that won’t harm the environment, require little natural resources to produce and maintain, and so on. Unfortunately, many of the building blocks aren’t sustainable. The materials are made with toxic chemicals. How did this happen? Chemists are the only people in the world who are capable of inventing a new material, yet they are not part of the design process. They need to be part of the discussion from the beginning.

 

On the bright side, this disconnect creates opportunities for green chemists. The way products are currently developed is backwards. Designers are restricted to use what’s available to build something. Instead, chemists should be working on sustainable materials to hand off to the design community. They can figure out how to use the materials in various applications.  To drill down further, there are also immediate opportunities in the pharmaceutical industry such as developing new, more efficient synthetic methods for active pharmaceutical ingredients. In the industrial sector, there’s a great need for new materials and application mechanisms that avoid VOCs and remove or replace other hazardous materials used in construction applications.

 

What are the most important sectors that need to be improved from a green chemistry perspective?

 

Education.

 

Instead of deciding which sectors, technologies, materials, and endpoints in need of improvement, we must focus on how we train the scientists in the first place. If you teach chemists how to be more sustainable from the start, there’s a greater chance that anything they make throughout their career will be more sustainable.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

News Roundup Jun 2-22.png

New Method of Extracting Metals from Raw Materials

June 7, 2017 | Science Daily

A team of chemists has developed a way to process metals without using toxic solvents and reagents. The system, which also consumes far less energy than conventional techniques, could greatly shrink the environmental impact of producing metals from raw materials or from post-consumer electronics.

 

Biodegradable Microbeads Prevent Ocean Pollution

June 8, 2017 | University of Bath

Scientists and engineers from the University of Bath have developed biodegradable cellulose microbeads from a sustainable source that could potentially replace harmful plastic ones that contribute to ocean pollution.

 

Business Benefits of Sustainable Chemicals Management

June 16, 2017 | GreenBiz

In tandem with the rise in interest in green chemistry, companies are increasingly looking to gain business value from sustainable chemicals management.  The key concepts: reducing risk from existing and emerging regulations while also helping to build consumer trust, meet customer demands and reduce testing costs.

 

Wind and Solar Combined Surpass 10% U.S. Electricity Generation

June 19, 2017 | C&EN

Wind turbines and photovoltaic arrays provided slightly more than 10% of U.S. electricity generation in March.  This marks the first time these two renewables combined have made a double-digit contribution to the nation’s generation of electricity, says a report from the U.S. Energy Information Administration.

 

Green Chemistry Efforts Honored

June 19, 2017 | C&EN

The 2017 Green Chemistry Challenge Awards hailed streamlined syntheses, dye-free printing, and more.  Five technologies were recognized and honored for their achievements and creativity at a ceremony held on June 12 at the National Academy of Sciences in Washington, D.C.

 

European Commission Publishes Catalog of Nanomaterials Used in Cosmetics on EU Market

June 19, 2017 | National Law Review

Regulation (EC) No. 1223/2009 on cosmetic products requires the European Commission to publish a catalog of all nanomaterials used in cosmetics placed on the market, indicating the categories of products and the reasonably foreseeable exposure conditions.

 

New Soluble Polymer Removes 93% of Toxic PFOA Chemicals from Drinking Water

June 20, 2017 | C&EN

Long-chain perfluorinated chemicals contaminate millions of Americans’ drinking water. These compounds are a legacy of industrial pollution and the use of firefighting foam at military bases and airports; they persist in the environment because of their strong carbon-fluorine bonds. Now scientists have designed a cross-linked polymer that might more effectively remove one of the more prevalent and harmful of these compounds, perfluorooctanoic acid.

 

Helium Shortage Looms

June 22, 2017 | C&EN

The blockade of Qatar that started on June 5 has shut down the source of 30% of the world’s helium, threatening another round of shortages and price increases for scientific instrument users. Helium is used to cool nuclear magnetic resonance magnets and as a carrier gas for gas chromatography and mass spectrometry. The element is also used in medical imaging and electronics manufacturing, as well as to float dirigibles.

Click here for more information on Helium: https://communities.acs.org/community/science/sustainability/green-chemistry-nex us-blog/blog/2017/02/16/critical-elements-series-helium-shortage-to-occur-in-the -next-25-50-years

Contributed by Lauren Winstel, ACS Green Chemistry Institute® Research Assistant

 

The Green Chemistry Challenge awards, administered by the EPA in partnership with the American Chemical Society (ACS) and its ACS Green Chemistry Institute® , recognize and promote innovations in chemical technology that reduce waste and the use and generation of hazardous chemicals. Past winners have gone on to commercialize their technology, grow their company, and improve upon their process with the increased recognition that the award provides, often leading to third party funding or buyout offers.  The following is a summary and the future outlook of the most recent award winners, who were honored and recognized at the 21st Green Chemistry and Engineering Conference in Reston, Virginia last week.

 

1. Academic Category – Eric J. Schelter, Ph.D., University of Pennsylvania

Schelter.PNG

 

The 2017 award in the Academic category features targeted coordination chemistry towards separations and recycling of rare earth metals, using tailored metal complexes and ligand synthesis.  Rare earth metals are essential components in many modern technologies, from personal electronics and lighting to renewable energy. However, these applications require various mixtures of elements which are difficult to separate once combined. In order for rare earth metals to be reused, the pure elements need to be isolated and extracted from consumer products in various recycling streams, which is one of the biggest challenges related to critical elements. Electronic waste is currently an elemental sink, to the point that the amount of rare earth metals found in e-waste is greater than known quantity within global reserves of such metals.

 

In order to solve this problem, Professor Schelter and his research group have come up with a simple and cheap method of extraction using a ligand framework that takes advantage of solubility differences.  Through combining metal mixtures with a benzene or toluene solvent, solid-liquid equilibrium can be identified which allows for quick separation.  Using the example of Neodymium (Nd) and Dysprosium (Dy), which are often used in large magnets, Schelter’s experiments showed that when starting with a 50/50 mixture of the two elements, a single pass from the ligand framework created 98% pure separation, which is the minimum purity necessary for reuse.

 

When analyzing the greenness of this process, the use of benzene raises a few concerns. Schelter and his group are well aware and plan to address this unsustainable solvent in future iterations of the technology.  In the future, Schelter and his group plan to make modifications to the ligand framework, working towards using kinetic control to achieve purification, as well as focus on recycling chemistry and eventually attaching the ligand to a resin.

 

2. Small Business Category – UniEnergy Technologies, LLC

redox battery w-c.png

 

The 2017 award in the Small Business Category features an advanced vanadium redox flow battery for grid energy storage applications produced by UniEnergy Technologies.  The need for energy storage goes hand in hand with renewable energy technology – many arguments against solar and wind power focus on their inconsistency and lack of reliability over 24 hour days.  Unfortunately, times of maximum generation for such renewable technologies often do not correspond with maximum usage in the early mornings and late afternoons.  Without storage options, the produced power goes to waste.  However, if the abundance of energy produced during daylight hours or times of continuous wind patterns could be stored and used when needed, renewables would become more reliable and readily available than nearly any other energy source.

 

This new battery, called the UniSystemTM, achieves what many energy storage attempts have failed to do before.  The vanadium electrolyte technology represents a breakthrough chemistry technique due to the increased energy density and broader operating temperature, allowing for megawatt scale storage that can be deployed in nearly any location on Earth, while also using much fewer chemicals with increased stability. Active heat management and self-contained cooling allow the battery to regulate itself, while also holding the power and energy in separate tanks, allowing for flexible and tunable usage that is not possible with conventional batteries.  This battery also has a longer lifetime than those currently on the market, and all materials are fully recyclable and non-toxic at end of life since the vanadium electrolyte is water based, immutable and does not degrade.

 

3. Greener Synthetic Pathways Category – Merck & Co.

 

The 2017 award in the Greener Synthetic Pathways category features an improved formula for Letermovir, an antiviral therapeutic agent for treatment of human cytomegalovirus.  This pharmaceutical route is greener than the original method in many ways.  The original route featured only 10% yield, estimated CO2 emissions of 1,657 kg, as well as 9 different solvents throughout the process and late stage chiral resolution which can have unpredictable results. The new process features a more reliable late stage asymmetric aza-Michael transformation using a fully recyclable and chemically stable organocatalyst.  The greener route also achieves high conversion and purity, increasing overall yield by over 60% at a low cost, all while using a through process with only 2 solvents and recycled reagents.

 

The final catalyst in this process is toluene, which is not ideal.  However, a lot of effort was put towards optimizing this drug for sustainability and atom economy with positive results; the new process reduced the carbon footprint of Letermovir by 89% and water usage by 90%.  With future improvements, Merck believes that this process is only a few steps away from zero-waste manufacturing.

 

4. Greener Reaction Conditions Category – Amgen Inc. and Bachem

 

The 2017 award in the Greener Reaction Conditions category features an improved technology for solid phase peptide synthesis, created as part of a collaboration between Amgen and Bachem. The pharmaceutical industry is often very energy intensive with high consumption of water, as well as inefficiently using many different materials and solvents in high quantities while yielding very small amounts of product. Peptide-based pharmaceuticals are an important part of therapeutics, including ParasabivTM and its active ingredient Etelcalcetide which is used to treat hyperparathyroidism. The newly designed manufacturing process has improved upon many of the unsustainable factors: shortened development processes equating to a 56% decrease in manufacturing time; high coupling yields resulting in a 5-fold increase in manufacturing capacity; the elimination of 1,440 cubic meters of waste, including 750 cubic meters of aqueous waste; and a 51% decrease in solvent use creating much cleaner reactions.

 

The future of this process lies in continued solvent reevaluation – according to green chemistry principles as well as Amgen executives, “the best solvent is no solvent at all.” Due to its broad applicability, this synthesis process has the potential to be used for manufacturing of many other peptide-based pharmaceutical products in the future.

 

5. Designing Greener Chemicals Category – Dow Chemical Co. and Papierfabrik August Koehler SE

 

Dow.PNG

The 2017 award in the Designing Greener Chemicals category features a breakthrough sustainable imaging technology for thermal paper that uses air-voided structures.  Thermal paper is very prevalent in everyday life, widely used for point of sale receipts, tickets, tags, and labels, all of which are often quickly discarded after use. The new manufacturing method takes a process that was previously chemically intensive and environmentally toxic due to lack of recyclability, and turns that process into a physical change reaction that occurs completely void of chemical interaction.

 

The new paper consists of three simple layers.  The top layer is comprised of voided opaque polymers, with a colored layer underneath, followed by a base layer.  When heat is applied to the opaque layer, the air void particles instantly collapse to reveal the color below. This process eliminates the need for ink, avoids manufacturer and consumer exposure to imaging chemicals, as well as improves long term storage capabilities since the contrast created will not fade even under direct and severe sun exposure.  The final product is compatible with existing thermal printers and is also directly recyclable with normal paper recycling steams, which creates a new recycled feedstock potential that was previously sent into landfills.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by By Samantha A. M. Smith, Ph.D. Candidate, Department of Chemistry, University of Toronto

 

2017gce.jpgThe ACS Green Chemistry Institute®’s (ACS GCI) Green Chemistry and Engineering Conference (GC&E) was kicked off with two simultaneous workshops, one of which was tailored toward students and post-doctoral fellows. During this workshop, we were placed into a hypothetical situation where we had to explain why we wanted to attend the GC&E Conference to our department chair. This seemed trivial for me as a University of Toronto student because our department chair is so supportive of our interest in green chemistry, however I quickly realized during this session that that may be a special case. I would like to discuss the reasons why a student, who may or may not be interested in green chemistry, should attend this conference.

 

First, I would like to touch on the average student’s experience of conferences. Generally, the conferences students attend are either very small, student-oriented, and focused on a particular division, or they are large and sometimes overwhelming national meetings. Either way, we find ourselves sitting in the same few rooms listening to the endless technical talks focused on our fields of expertise. These conferences can further our knowledge of our fields, and they are great places for networking with professors and students. But what about industrial and governmental presence? What about direct applications on a commercial scale? What about the toxicological effects or the measurements of such effects? These are not often the focus at conferences. They are generally geared toward the discoveries and results of chemical reactions, computations, and educational techniques.

 

Picture1.png

The first thing I noticed at the GC&E Conference was that the atmosphere was very different. One of the first talks I attended was an intimate and rather unique conversation between the audience and the “Fathers of Green Chemistry,” John Warner and Paul Anastas, which was focused on the subject of the absence of toxicology in chemistry curricula. John Warner stated that, “If chemists were in toxicology, a lot of our problems would be solved.” Unfortunately, toxicology is not required for a chemistry degree.

 

In attending the GC&E Conference, I have been exposed to many different fields of chemistry that I was nott aware existed. I attended a talk on the recycling of carpet materials and another on the recycling of electronic waste. I have learned about how local food waste (biomass) can be transformed into components in beauty products and what challenges the apparel and footwear sectors are facing and how they are approached. Chemists from all sectors are discussing their challenges, experiences and innovations with regard to toxicology, waste, environmental and heath impacts, and complying with regulations.

 

The GC&E Conference was much smaller than I had anticipated in that the number of participants was drastically different than I am used to. A large percentage of speakers were from the chemical industry sector, which is something that is lacking at most chemistry conferences. The size was small enough that networking was easy and meeting very important people (directors of organizations, for example) was not really a challenge. Many times, I ran into a particular director who at a larger conference, I would not have been able to connect with. Not only is this great for me from a networking perspective, but because of the industrial presence, I gained an understanding of the challenges companies are facing and the current sustainable practices they use. I can take these perspectives back to the lab and apply them to my research, using them as tools to focus my research more toward solutions to common sustainability challenges.

 

The ACS GCI GC&E Conference has given me an experience difficult to replicate. I have connected with professionals well-advanced in their careers, chemists from a variety of industries, the “Fathers of Green Chemistry,” and many others whose passions are focused toward sustainability. I have listened to topics not normally present at chemistry conferences, learned about current challenges faced in industry, and analyzed what needs to fundamentally change in our educational sector. Most importantly, I have learned that sustainability is being implemented everywhere and that it is a worldwide goal.

 

save-the-date-2018.png

So, for those of you who are passionate about green chemistry, or even those of you just beginning to think about green chemistry, I believe it is a conference that you should attend, as the benefits surpass the usual student experiences. GC&E will expose you to a widespread collection of exemplary science and discussion, which is proof enough that green chemistry is not only a sustainable movement, but it is also becoming a reality in academia and industry.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

My name is William Frost, and I am a rising senior at Bucknell University pursuing degrees in both chemistry and economics. Throughout two years of high school chemistry and an intensive three years of college chemistry, the word green has never really come up. The science is so process-and-product-driven that it becomes easy for students and professors alike to think about nothing else. The most the subjects of sustainability or environmental justice have come up in my classes is through the discussion of material costs or the question of whether or not “I can throw this stuff down the drain.” Otherwise, it has always acted as a nuisance to process-planning or a barrier to a quick cleanup.

 

It was not until I applied to an internship with the Green Chemistry Institute at the American Chemical Society that it was brought to my attention. I did some initial, bare-bones research and came to the conclusion that it was essentially sustainable chemistry. I have always understood that sustainability is one of the more pressing issues of my generation, so I thought it could be a really cool experience and applied.  After successfully obtaining the internship, I was thrown straight to work, and I started during the most exciting time of the year.

 

That week, we prepared for the annual Green Chemistry and Engineering (GC&E) Conference which was to make its 21st appearance. I had the opportunity to participate in the conference as a staff member, which included helping the team in any way I could, but attending many of the sessions and networking events during my free time. It was a phenomenal atmosphere: 507 students, teachers, industrialists and pharmaceutical scientists attended the three-day conference.

 

I learned that green chemistry is about so much more than chemistry’s place in sustainability. There is no one single definition you can put on the subject because it permeates all aspects of chemistry. Every sub-sector of the science can incorporate green chemistry in some way, as it is the implementation of sustainable, green practices to better the daily life of those currently living and to leave a thriving world for the generations to come.

 

The conference was an incredible place to be. There was not a single person I met –and I was able to meet a lot of people – who was not extremely driven in implementing these green practices in their work. As a student at the event, it was encouraging to see the collaborative efforts of everyone at the conference, whether it be in discussing the ways that people could provide information to help a study or simply introducing someone to new ideas.

 

I attended sessions that included very technical green organic chemistry research projects, social and environmental justice discussions, circular economy innovations, and much more. Every session had an interesting topic and engaging speakers, making the most complicated of topics understandable for someone as naive as I was going into the conference.

 

Networking sessions were incorporated into every day. I found myself meeting people at meals, poster sessions and a pub crawl. There were professional as well as casual settings in which to get to know many of the people deeply involved in the advancement of green chemistry and those who “wore similar shoes” to my own.

 

It is a conference I plan on attending again next year as I have now learned the importance of its implementation in chemistry around the world. Chemists have always been well-intentioned, but the side effects of what we do can no longer be ignored. They are evident in the chemical crises you hear about around dump sites as well as the increasing temperatures inducing global warming.

 

One of the more staggering facts I learned was that some 90 percent of chemical feedstocks come from petroleum sources. That’s 90 percent of the chemical derivatives that chemists use coming straight out of the ground from a non-renewable source. These are the issues we must address: Can we find ways to prevent the waste from ever-generating, find an efficient way to use bio renewable feedstocks, and develop safer chemicals in the first place?

 

It is essential that people, scientists and all others learn about the green ways we can do chemistry. It is not all toxic and hazardous as many people think. Chemicals are not a bad thing as many ‘chemical-free’ products will tell you. ‘Chemical-free’ simply cannot exist as chemicals are the foundation of everything we are and everything we know. It must be understood that chemistry is where this problem began, but chemistry is exactly where we will see it end.

 

Find a way to make all of this a part of your life. It is time people became less scared of chemistry and got more involved in finding ways to solve these problems – which is no easy task as I quite fully learned during my three days at the GC&E Conference.

 

There are many ways to get involved and many levels on which to do so. The ACS Green Chemistry Institute® is the best place to start. It provides you with educational, informational and professional resources, but getting involved does not stop there. There are activist groups like Beyond Benign and NESSE who are working on finding the best ways to introduce people to these new ways of seeing chemistry. Start here to find the way all of this motivates you, and let that push you to help accomplish milestones great toward a great and necessary cause.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Drugs are expensive. That is something the whole world can agree on. People are spending too much on drugs and an unprecedented amount of population does not even have access to medications in the first place. Diminished access to drugs may stem from many factors, but one is certainly the expense of manufacturing the drugs. Now, scientists are addressing this by redesigning the processes with new technology — making it simpler and much more cost effective to produce drugs.

 

Collaboration between divisions, a pressing issue to the progression of process development, is facilitated at the annual Green Chemistry and Engineering Conference hosted by the ACS Green Chemistry Institute®. Themed sessions are held to bring together people with similar studies and motivations to foster a more united effort in our advancements to a greener and more sustainable future for all. One session in particular showed much potential for growth in this field. Continuous chemistry, quite possibly at the forefront of advancement, is being used to develop new and innovative synthetic processes to make medications more accessible around the world.

 

One of the talks at the Green Chemistry and Engineering Conference came from Frank Gupton, Ph.D., from Virginia Commonwealth University. Gupton was provided a grant from the Gates Foundation circa 2013 to found the Medicine for All Initiative (M4ALL), which has the goal of reducing medication costs while improving patient access to medications through the transformation of the pharmaceutical manufacturing industry.1 Since its founding, Gupton has enlisted help from the University of Washington and MIT in pursuing his efforts. The initiative focuses on the redevelopment of generic drugs. These are drugs that have outgrown their patents and have been fully vetted by regulatory institutions.4

 

Means of Change

Chemists find that the main cost drivers of generic drug prices are found in the starting materials, active pharmaceutical ingredients (API), and the type of production method used (batch vs. flow).1 The issue around starting materials is one observed in all divisions of chemistry as we begin to uncover the limited availability of many of the essential elements used in the chemical reactions seen in academic, governmental and pharmaceutical labs. As economics teaches us, when a low supply meets a high demand, prices will rise.

 

APIs are the costliest part of generic medications. These account for 65 to 75 percent of their selling price.4 The API is the ingredient that is biologically active, allowing a drug to serve its purpose within the human body, making it crucial to the overall utility of a medication. These have become exceedingly expensive, causing the drug companies themselves to begin outsourcing their production.3

 

The prices attached to each of these components are mainly dependent on economic factors, which make it hard for chemists to come up with many alternatives aside from developing novel methods of using less expensive starting materials or cheaper production methods. The former is an issue many green chemists are finding themselves working on as they attempt to find ways to utilize renewable biomass feedstocks rather than the limited, cheaper petroleum ones vastly used in today’s market.

 

As for the latter, there is a more efficient method of drug development that has been implemented in academic research labs across the world and is starting to grain ground in the pharmaceutical industry. Most drugs are currently manufactured under a batch process, which involves specific quantities of solvents, reactants and catalysts finding themselves in a container where the reaction is allowed to proceed.2

 

The alternative to this, as discussed at the Green Chemistry and Engineering conference, is continuous, or flow, chemistry, where reactions are done under constant motion. Rather than looking at stoichiometric ratios, we now have the ability to use flow rates to determine the yields of our chemical reactions. Under batch conditions, each reaction is different in its own way, but with flow you are capable of developing a more normalized synthetic method where you have complete control of all variables and can change them quickly at will.

 

This method has yet to be implemented in industry with the strength and vigor it deserves. This is not due to a lack of desire to make the change, but more a lack of the ability to do so. According the Dr. Gupton, the two main barriers come from cultural expectations and legacy investments. The issue with culture is due to how used to batch processes chemists are. Flow is more familiar to engineers who do not do most of the work in process development. Investors, on the other hand, resist change when something is working well. In a profit sense, the batch process works just fine. Regardless of the barriers to implementation, the work must be done somewhere where the benefits can be seen. This is exactly what Dr. Gupton and the M4ALL initiative is doing.4

 

Advances

A major success for the initiative was achieved in the development of a new synthetic process for the HIV drug Nevirapine. The condition of their grant was to reduce the cost of this drug by 10 percent. What they did reduced it by 40 percent.4

 

M4ALL has reached a global scale as they have been recruited by the government of the Côte d’Ivoire to help develop flow chemistry infrastructure that allows the country to develop its own medications, greatly increasing domestic access. The country has experienced much turmoil in the recent past and is exposed to a multitude of diseases. Development of this infrastructure will greatly improve the lives of its citizens and the future of the country.4

 

Women and men like Dr. Gupton and all the others who presented their research at the Green Chemistry and Engineering Conference are paving the path for future drug development processes. It is now our duty to encourage, help or act in any way we can to progress this science. The future relies on our adaption to sustainable and cost-effective techniques, and it is not through the effort of scientists alone that this will be achieved. Visit the ACS Green Chemistry Institute® site to find ways in which you can help advance the valiant efforts of scientists on the bench who cannot do their work without the help of others.

 

1 "Medicines for All Institute Initiative Advising & Introductions." The Arcady Group. N.p., 14 May 2017. Web. 21 June 2017.

2 Porta, Riccardo, Maurizio Benaglia, and Alessandra Puglisi. "Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products." Organic Process Research & Development (2015): n. pag. ACS Publications. Web.

3 Stone, Kathlyn. "What Is an Active Pharmaceutical Ingredient?" The Balance. N.p., n.d. Web. 21 June 2017.

4 "Dr. Frank Gupton." Telephone interview. 21 June 2017.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

The organic personal care market is expected to grow to US$25.1 billion by 2025. Fueling this demand are consumers who are anxious to avoid problematic chemicals and are interested in products that contain natural ingredients. Likewise, brands are interested in reducing their environmental footprints by using renewable raw materials, greener processes and more sustainable packaging.

 

Unlike other industries, where biobased chemicals have to “drop into” existing processes seamlessly, cosmetics and personal care products can often leverage the novel ingredient as a selling point.

 

Humans have been using natural products to color hair, oil skin and heal wounds for eons. But new naturally derived products are not the same as yesteryear's. Advances in chemical analysis and extraction technology help scientists identify and locate the “good stuff” — say an antioxidant — while removing other compounds that may have adverse impacts, for example, that cause inflammation. This precision helps companies know exactly what is in their product and improves the uniformity of natural products.

 

Another hurdle chemists are helping us jump is to ensure that bioactive ingredients remain available in the final product and last on the shelf. Every cook knows there is a world of difference between a fresh vegetable and a vegetable that has been sitting around for too long. The same concept holds true with plants heading toward a cosmetic formulation.

 

Dr. Richard Blackburn, University of Leeds, organized a symposium at the 21st Annual Green Chemistry & Engineering Conference focused on green chemistry in cosmetics and personal care products.

 

330px-Sacred_lotus_Nelumbo_nucifera.pngMichael Koganov, Ph.D., Vice President of BioMaterials, Ashland Specialty Ingredients, presented how Ashland is approaching the issue with their mobile plant processing units, which can be driven directly to the field so that plants can be harvested and processed in one step, minimizing the loss of active compounds. These units, which use a solvent-free Zeta Fraction Technology, can process up to 10 tons of living plants at a time.

 

Ashland has already been developing and using its technology, acquired from AkzoNobel in 2015, to provide brands with exclusive natural ingredients. This year, Ashland has begun putting some of their botanical ingredients on the open market. Their first product, derived from the sacred lotus flower (Nelumbo nucifera), has been tested against a placebo to provide benefits such as a 20 percent reduction in wrinkles, 14 percent increase in skin hydration and a 25 percent increase in a measure of skin softness.

ashland.png

 

 

Another trend in producing greener cosmetics looks beyond agricultural sourcing, where concerns about competing for land use with food production worry some. L

uckily, there are other rich sources of biomass, such as waste from food and beverage production and ocean life.

 

Algae and orange peels

 

Keracol, a small business spun out of the University of Leeds, has recently developed a line of naturally-derived hairstyle products. Hair sprays and gels contain a film-forming polymer that provides the shine and hold required. Options are limited for consumers looking for a bio-derived hair spray or gel that performs, washes out easily and is flexible enough to use on damp or dry hair.

 

Meryem Benohoud, Ph.D., Lead Product Development Scientist at Keracol, has been working with two biopolymers that are plant-sourced, renewable and biodegradable: alginic acid and pectin. Alginic acid is an anionic polysaccharide found in brown algae. Pectin is a heteropolysaccharide found in plants, in this case sourced from waste material, e.g. orange peels from the beverage industry.

 

Keracol’s patented formula takes advantage of alginic acid and pectin’s natural gel-forming properties while overcoming their limitations — namely, both biopolymers do not naturally dissolve in ethanol, a significant problem for hair sprays that are typically 55 percent ethanol.

 

Pinot noir, port, blackberries and blackcurrants

 

pure-super-grape.pngGrape skins, along with other red or blue berries, contain antioxidants and water-soluble pigments called anthocyanins. Research has shown that anthocyanins have many bioactive properties, such as free radical scavenging, metal-chelating, antimicrobial, wound healing and chemopreventive activities, and their ability to prevent oxidative damage makes them of interest in skin care products. As a result, several projects are looking at different uses for the waste (skins, seeds, damaged berry, etc.) from wine and port production as well as the juice and fruit industry to recover these valuable compounds for cosmetic applications.

 

In 2015, Keracol partnered with Marks & Spencer to bring to market a set of skincare products containing antioxidants and anti-inflammatory compounds extracted from the waste stream of pinot noir production. The resulting “Pure Super Grape” was favorably received in the marketplace, winning several cosmetic industry awards.

 

Sannia Farooque, University of Leeds, has also been looking at blackcurrant waste from drink processing in the U.K. as a source of anthocyanins and antioxidants. Similarly, Nuno Mateus, Ph.D., from the University of Porto is systematically researching uses of waste from port and blackberry production — big business in Portugal. Both of these researchers are bringing a chemists eye to understanding the composition of the active compounds, assaying their potential positive qualities, and developing processes to extract, preserve and use them in a cosmetic formula.

Red_wine_grape_pomace.png

 

 

As the demand for “natural” and safer cosmetics grows, it will be up to chemists to seek the most sustainable approaches to supplying natural ingredients — whether it be by using byproducts of the food industry as raw material or by developing solvent-free extraction technologies that bring the chemistry lab to the field. Green chemistry is not black and white. There is and will always be a sliding scale from somewhat better to groundbreaking, with new innovation and technology pushing us toward the more sustainable end of the equation over time.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

hancock-winners.pngTwo U.S.-based students have received the 2017 Kenneth G. Hancock Memorial Award, presented by the American Chemical Society Green Chemistry Institute® (ACS GCI). Each recipient receives $1,000 and travel support to attend the ACS GCI Green Chemistry & Engineering Conference (GC&E). The award was formally presented at the U.S. EPA's Green Chemistry Challenge Awards Ceremony on June 12, 2017 in Washington, D.C.

 

This year’s recipients are Julian West and Adam Fisher.

 

Julian West is a Ph.D. candidate at Princeton University working on catalytic transformations in Professor Erik Sorensen’s group. His research, titled “Design of New, Sustainable Chemical Reactions through Earth Abundant Element Photocatalysis,” examines the application of earth-abundant elements to a variety of synthetic problems of high interest to academic and industrial chemists. As part of his award, Julian attended the GC&E Conference (GC&E) in Reston, Va. from July 12-15, 2017. He describes the conference as a “tremendous benefit for [his] career that will enable [him] to pursue green chemistry research at the highest level going forward.” Julian’s award was sponsored by the National Institute of Standards and Technology.

 

Adam Fisher is a marine systems engineering student interested in material science. His project is focused on utilizing magnetic carbon nanocomposite for water treatment. Adam presented his research during the poster session at the GC&E Conference. His presentation was on the use of this nanocomposite to remove aspirin from water in an effort to address the concerns of pharmaceuticals being found in small concentrations in drinking water. Fisher is a rising senior at the United States Merchant Marine Academy in Kings Point, N.Y. His award was sponsored by the ACS Division of Environmental Chemistry.

 

If you are interested in applying for the Hancock Memorial Fellowship or another green chemistry award, please take a look at the ACS GCI awards page for application deadlines and details.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Siddharth V. Patwardhan, Ph.D., Senior Lecturer, Department of Chemical and Biological Engineering; Joseph R. H. Manning, Ph.D. Candidate in Chemical Engineering, University of Sheffield

 

This blog is based on a recent article and associated cover feature: An eco-friendly, tunable and scalable method for producing porous functional nanomaterials designed using molecular interactions, ChemSusChem, 10(8), 1683-1691, 2017. For more information, visit the Green Nanomaterials Research Group.

 

IntroPic.png

 

Summary

Nanosilicas have the potential to solve a number of pressing industrial issues, but are locked away because of wasteful and prohibitively expensive synthesis conditions. By contrast, nature produces far more complex silica under ambient conditions. By combining natural silica with computer simulations, we have discovered a method to produce green nanosilica, unlocking their industrial potential once and for all.

fig1.png

 

As an industrial material, silica is widely used as an inert filler and texturing agent in everyday products ranging from car tires to toothpaste, drug tablets, and powdered cosmetics and foods. Since the 1990s, scientists have been working on new, more complex nanosilica materials to improve upon these applications and to enable more high-value applications, such as soaking up pollutants from the air and water, capturing carbon from industrial exhausts, catalytically cracking crude oil into petroleum products, and storing medicines for slow release in the body. The key difference between currently-used industrial silicas and the new nanosilicas is a tiny pattern of holes on the material’s surface (Figure 1). These holes are a perfect size for the material to act like a sponge and soak up or release molecules exactly when and where they are needed.

 

But these advantages come with a cost, specifically making the synthesis much more complex and expensive. To build up this spongy structure, a molecular template called a surfactant is used during synthesis (Figure 2). The surfactant helps to direct the shape of the material around it on the nanoscale as it assembles, but using it both slows down the synthesis and increases the energy required for the material assembly. Furthermore, these surfactants need to be removed before the sponge-like structure can be accessed, adding a new step to the process.

 

fig2.png

 

Due to how tightly-bound the template molecules are to the structure, the commonest and most effective way to remove them is to destroy them with heat. This has two big environmental and cost drawbacks: First, this requires heating the material to over 500oC for an extended time, which is very energy-intensive; second, once it has been destroyed, the template chemicals cannot be reused to make more nanosilica, increasing the cost significantly as the surfactants are the most expensive reagent in the process. All of this adds up to a more complex and environmentally damaging two-step synthesis, locking away the nanosilicas from seeing widespread use.

 

This creates a stark contrast with natural silica materials – there are several microorganisms that create highly detailed and complex silica cell walls around themselves (Figure 3). Additionally, this occurs in the ocean, which has much milder conditions compared to those used in the lab.

 

fig3.png

 

The way these microorganisms can manage this amazing feat is through specialised proteins that, in addition to acting like a far more complex template than the surfactants used in artificial nanosilicas, also give the chemical reaction a huge speed boost to boot.

 

So if nature can do that, why can’t we? The simple answer is that we can. Using template molecules whose structure is inspired by the natural proteins, we can produce silica faster, greener and cheaper than current industry methods (Figure 4) while retaining the quality of nanosilicas.

 

fig4.png

While using such “bio-inspired” templates is an excellent solution to the drawbacks of nanosilica synthesis, there remains the need to remove the templates from the material. Simply aping the methods of purifying other nanosilicas like heat treatment methods negate much of the benefits of adopting this bio-inspired approach, as well as blocking their use for more specialised applications, such as the storage of delicate biomolecules.

 

Instead, in our most recent study, we took a step back and studied what makes the bio-inspired template so good at its job in the first place. Using computer simulations of the template and silica, we found that the two species are attracted to each other by their opposite charges, which is the source of both the structure direction and speed boost. What we also found is that this attraction is highly dependent on the solution chemistry – simply washing the materials in acidic environment (contrasting with the neutral or slightly alkaline reaction conditions) acted like a switch to unstick the bio-inspired templates from the nanosilica, leaving behind a pure, ready-to-use material, and similarly, a ready-to-reuse template molecule. This is specific to the type of interaction between the template and silica, meaning that this discovery was only possible because we used the bio-inspired templates rather than the surfactant templates whose interactions are much more difficult to switch off.

 

The new washing technique is a clear improvement over purification by heat treatment, as washing both eliminates the energy costs and allows for the templates to be used as a catalyst rather than a reagent, both of which are important principles of green chemistry. Environmental improvements notwithstanding, the washing method has some significant technical advantages over the previous methods, too. By fine-tuning the strength of the washing acid, we could choose to only remove a certain amount of our template, leading to new composite materials in a much simpler, less laborious way than before (where the surfactant had to be fully removed prior to a separate reintroduction of active chemicals into the structure) (Figure 5).

 

fig5.png

 

Overall, this new technique has unlocked the possibility for nanosilicas to be upscaled to industrial levels. By harnessing the power of computer simulations, and applying green principles to the technique design, this study has cut down energy costs of material purification significantly and avoided damage to the template, allowing for it to be reused. Not only that, but the elimination of harsh conditions during all parts of the process enables new applications of nanosilica in carrying fragile enzymes or other biomolecules.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Filter Blog

By date:
By tag:
close mobile menu