HandaLipshutz.pngProfessors Bruce Lipshutz, Ph.D., Professor of Chemistry and Biochemistry, University of California – Santa Barbara, and Sachin Handa, Ph.D., Assistant Professor of Chemistry at the University of Louisville, have been awarded the Peter J. Dunn Award for Green Chemistry and Engineering Impact in the Pharmaceutical Industry.

 

Lipshutz and Handa have developed newly engineered catalysts for sustainable surfactant chemistry in water. They have demonstrated the use of nanomicelles and nanocatalysis to successfully carry out reactions of great relevance and that are commonly used in the pharmaceutical industry. The use of a water-based system coupled with a significant reduction in the use of platinum group metals resulted in significant sustainability advantages for the industry.

 

The winners will be honored during a symposium at the 22nd Annual Green Chemistry and Engineering Conference to be held on June 18-20, 2018, in Portland, Oregon.

 

The Peter J. Dunn Award was established in 2016 by the ACS GCI Pharmaceutical Roundtable. The award recognizes outstanding industrial implementation of novel green chemistry and/or engineering in the pharmaceutical industry that demonstrates compelling environmental, safety, cost and/or efficiency improvements over current technologies.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Malka Doshi, Green Relations Officer, Green ChemisTree Foundation

 

The ACS Green Chemistry Institute is once again partnering with the Green ChemisTree Foundation, India for the 5th Industrial Green Chemistry World (IGCW-2017) Convention and Ecosystem, scheduled on October 5-6, 2017 in Mumbai, India.

 

The IGCW Convention series is uniquely designed around the central theme of Profitability from Industrial Green Chemistry and Engineering. Since 2009, four biennial IGCW Conventions have seen a growing number of industry stakeholders of both national and international repute converge in Mumbai.

 

The IGCW ecosystem brings together key stakeholders in the Indian chemical industry – including senior government officials, chief decision-makers from industry, green chemistry and engineering experts, solution-providers, and research organizations – on a common platform with a single agenda to accelerate the implementation of green chemistry and engineering practices in India.

 

The 5th IGCW-2017 marks the completion of the “GC&E Awareness phase” in India and propels the start of the “GC&E Implementation phase.” In this broader context, IGCW-2017 has expanded its scope and structure to incorporate subject-specific themes across the two-day convention that will be explored during the nine following concurrent events:

 

Convention and Ecosystem.jpg

  • The IGCW Symposium showcases the IGCW Convention & Ecosystem’s mission by bringing together the world’s best industrial practices and success stories on green chemistry and engineering.

  • The SERB-IGCW Awards collaborate with the Department of Science & Technology of the Government of India to highlight outstanding initiatives in green chemistry and engineering  launched by industry, start–ups, and the knowledge community.

  • The IGCW-EXPO will bring together 40+ technology providers from all over the globe that offer green chemistry and engineering solutions needs of  the Indian chemical industry.

  • The IGCW-PCB Conference will feature talks by senior representatives of the State and Central Pollution Control Boards to explore their roles in the implementation of green chemistry and engineering practices to facilitate pollution prevention.

  • The IGCW-FSC Flow Chemistry Workshop seeks to expand awareness and understanding of flow chemistry technologies and their applications.

  • IGCW-GC&E Emerging Tools & Technologies is integrated into the IGCW ecosystem with the objective to provide a platform for participating companies to gain a first-hand understanding of emerging tools and technologies with respect to their  green chemistry and engineering applications.

  • The ACS GCI Pharmaceutical Roundtable (GCIPR) Workshop on Solvent & Reagent Selection Guide will be conducted by experts from the ACS GCI Pharmaceutical Roundtable (GCIPR), focused on accessing the solvent and reagent selection guide and other green chemistry and engineering tools as developed and used by GCIPR member companies.

  • The IGCW 1800 seminars are subject-specific seminars on relevant topics related to the industrialization of green chemistry and engineering applications. The selected topics are: Green Processes, Green Catalysts, Green Solvents & Green Engineering.

  • The IGCW CSIR Industry Workshops  will connect the Council of Scientific & Industrial Research (CSIR) Lab’s green-chemistry-and-engineering-related projects to senior representatives in the chemical industry. CSIR scientists will share success stories, present potential collaborative models, and showcase subject-specific competencies.

 

For more details on IGCW-2017, or to learn how you can get involved, please email connect@industrialgreenchem.com.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Despite the wide variety of chemistry conducted as part of drug discovery and development and the undoubted ingenuity of the chemists conducting the research, the majority of reactions still fall into a relatively small number of categories.

 

With this in mind, chemists in the industry have previously sought[i],[ii] to offer guidance that both encourages chemists to use greener reagents by first intent and provides a simple, easy-to-use reference for greener alternatives to be considered when reactions are repeated and/or scaled up.

 

More recently, the ACS GCI Pharmaceutical Roundtable has brought together contributions from multiple pharmaceutical companies to provide a more comprehensive set of reagent guides that you can find at http://www.reagentguides.com/.

 

Guides are freely available for 11 transformations: oxidation to aldehyde and ketones, nitro reduction, N-alkylation, O-dealkylation, ester deprotection, epoxidation, Boc deprotection, amide reduction, bromination, reductive amination, and metals removal.

 

Additional guides on Buchwald-Hartwig amination, iodination and chlorination are currently only available to members of the Pharmaceutical Roundtable, but are scheduled to be rolled out to a wider audience soon. The Roundtable will be developing and releasing additional guides over time.

 

A tutorial on the guides is available here: https://youtu.be/w05iq4VcPts

 

venn-large.pngEach circle of the Venn diagram represents a different criterion –  those being ‘scalability,’ ‘greenness’ and ‘wide utility.’

 

The ideal reagent will have all three characteristics and appear in the middle (green area) of the Venn diagram, whereas some reagents have one of the traits but none of the others or a mix of two but not the third.

 

Placement within the Venn diagram can change with many variables, including solvent, catalyst, treatment of wastes, etc.

 

Good green chemistry requires the chemist to look across a range of factors before making the best choice. With the inclusion of information like atom efficiency, ecotoxicology/toxicology profiles, safety issues, waste products, sustainable feedstocks and more, we hope these guides give promotion to some reagents as compared to others. A  holistic approach is encouraged, however. For example, if a ‘greener’ reagent gives a much lower yield or requires multiple steps, the overall benefit may be outweighed (i.e., it may give rise to a higher footprint in the wider context) compared to an initially less ‘green’ reagent.

 

DISCLAIMER

The American Chemical Society Green Chemistry Institute’s Pharmaceutical Roundtable (“the Roundtable”) has created this Reagent Guide to inform and guide users toward greener reagents for various chemical transformations. The Roundtable has used reasonable efforts in collecting, preparing and providing quality information and material, but does not warrant or guarantee the accuracy, completeness, adequacy or currency of the information contained in the Reagent Guide. By downloading, viewing and utilizing information from the Reagent Guide, visitors assume full responsibility for their own actions and any damages or liabilities that may result from the utilization of information obtained from the Reagent Guide. Should you have any questions or comments about the Reagent Guide or this disclaimer, please send an e-mail to gcipr@acs.org.

 


[i] Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation

K. Alfonsi, J. Colberg, P. J. Dunn,* T. Fevig, S. Jennings, T. A. Johnson, H. P. Kleine, C. Knight, M. A. Nagy, D. A. Perry*, M. Stefaniak. Green Chem. 2008, 10, 31–36.

 

[ii] Development of GSK’s Reagent Guides – Embedding Sustainability into Reagent Selection

J. P. Adams, C. M. Alder, I. Andrews, A. M. Bullion, M. Campbell-Crawford, M. G. Darcy, J. D. Hayler, R. K. Henderson, C. A. Oare, I. Pendrak, A. M. Redman, L. E. Shuster, H. F. Sneddon,* M. D. Walker. Green Chem. 2013, 15, 1542-1549.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Mary M. Kirchhoff, Ph.D., Director, ACS Green Chemistry Institute®; Executive Vice President of Scientific Advancement, ACS

 

Summer is always a busy season for the ACS Green Chemistry Institute® (GCI), and this year was no exception. My colleagues and I enjoyed seeing so many of you in June at the 21st Annual Green Chemistry & Engineering Conference. Your feedback on the technical symposia, networking events and poster sessions in Reston are already helping to shape next year’s conference, which is being chaired by Julie Haack from the University of Oregon and Richard Blackburn from the University of Leeds. The 22nd Annual Green Chemistry & Engineering Conference will be returning to Portland, Oregon from June 18-20, 2018.

 

The Summer School on Green Chemistry and Sustainable Energy was held the week following the conference at the Colorado School of Mines. Fifty-three graduate students and postdoctoral scholars from the U.S., Canada and Latin America participated in the week-long program. Participants presented their research during poster sessions, engaged in lectures on specific topics in green chemistry and sustainable energy, and conducted a modified Life Cycle Analysis to determine the “greenest” pathway toward a target molecule. Presentations on careers, publishing, and proposal writing rounded out the week – along with a white water rafting trip.  The program is supported by a generous grant from the ACS Petroleum Research Fund.

 

I was thrilled to attend last month’s Green & Sustainable Chemistry (GSC-8) Conference in Melbourne, Australia. The conference was part of the Royal Australian Chemical Institute’s Centenary Congress, an event that encompassed nine conferences and engaged approximately 3,500 attendees, making it the largest chemistry conference ever held in Australia! The GSC-8 Conference was highly international, with plenary talks delivered by scientists from Australia, Canada, China, Israel, Japan, the UK and the US. I am delighted that the next Green and Sustainable Chemistry Conference (GSC-9) will be held in 2019 in conjunction with the 23rd Annual Green Chemistry & Engineering Conference in Reston, Virginia.

 

We are now finalizing preparations for the ACS National Meeting, which begins in Washington, D.C., this week. Numerous symposia feature green chemistry talks, and I encourage you search the program by topic (green chemistry) to identify symposia of interest to you. We look forward to seeing you in Washington over the coming week!

 

mary-sig.png

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Samy Ponnusamy, Ph.D., Fellow, Green Chemistry, MilliporeSigma; and Jeffrey Whitford, Head of Corporate Responsibility and Branding, MilliporeSigma

 

Picture1.pngSummary: MilliporeSigma created a unique, web-based greener alternative scoring matrix, also known as DOZN: a quantitative green chemistry evaluator based on the 12 principles of green chemistry. The 12 principles of green chemistry provide a framework for learning about green chemistry and designing or improving materials, products, processes and systems. DOZN scores products based on metrics for each principle and aggregates the principle scores to derive a final aggregate score. The system calculates scores based on manufacturing inputs, Globally Harmonized System (GHS) and Safety Data Sheet (SDS) information, which provide a green score for each substance. DOZN is flexible enough to encompass the diverse portfolio of products, ranging from chemistry to biology-based products. The DOZN system has also been verified and validated by a third party to ensure best practices are applied, and a peer reviewed paper has been published on it recently. This new greener chemistry initiative offers customers an increased breadth of greener alternative products with confirmatory documentation to validate greener characteristics.

 

Introduction: Green chemistry is the concept of developing chemical products and processes that minimize the use and generation of hazardous substances, reduce waste, and reduce demand on diminishing resources. Paul Anastas and John Warner developed the foundation that has served as the global framework of green chemistry. That framework proposes 12 complementary principles around resource efficiency and risk (human health and environmental) minimization and targeting a life-cycle perspective (e.g., raw materials extraction, chemical production, and end-of-life bioaccumulation and biodegradation). Ultimately, these 12 principles were adopted by American Chemical Society (ACS) Green Chemistry Institute (GCI).

 

The 12 principles are only conceptual and do not provide a quantitative framework. While various approaches to quantifying greener processes and products have been proposed, there is no unifying set of metrics in place. After a review of the current state of green chemistry methods, MilliporeSigma developed DOZN, a quantitative green chemistry evaluator, and leveraged generally accepted industry practices.

 

Quantitative Green Chemistry Evaluator:

 

The design objectives developed by MilliporeSigma industrial chemists included the following:

 

  1. Allow for direct comparison between alternative chemicals considered for the same application as well as direct comparison between alternative synthesis manufacturing processes considered for the same chemical product.
  2. Allow transparent comparison against each of the 12 principles and for each of the three major stewardship categories: resource efficiency, human health and environmental hazard, and energy use.
  3. Provide sufficient flexibility to apply to the diverse product portfolio.
  4. Be inexpensive to implement by utilizing readily available data.
  5. Be based on generally accepted industry practices when available.
  6. Be easy to communicate the method and results to customers.

 

Considering these guiding elements, we investigated and designed an approach to evaluate and score chemical products and processes on each of the 12 principles.

 

Categories: DOZN groups the 12 principles into like categories, allowing for a focus on overarching green chemistry categories of hazard, resource use and energy efficiency. These category groupings and scores are shown in Table 1:

  • Improved resource use
  • Increased energy efficiency
  • Reduced human and environmental hazards

 

Greener Alternatives Example Results:

 

Table 1

Category and Related Principles

Old

1-Aminobenzotriazole Process

Re-engineered –

1-Aminobenzotriazole Process

Principle Score

Principle Score

Improved Resource Use

Principle 1: Prevention

2701

1042

Principle 2: Atom Economy

933

345

Principle 7: Use of Renewable Feedstock

933

345

Principle 8: Reduce Derivatives

0.0

0.0

Principle 9: Catalysis

0.5

1.0

Principle 11: Real-Time Analysis for Pollution Prevention

1.0

1.0

Increased Energy Efficiency

Principle 6: Design for Energy Efficiency

3282

1322

Reduced Human and Environmental Hazards

Principle 3: Less Hazardous Chemical Synthesis

3358

1455

Principle 4: Designing Safer Chemicals

5.0

5.0

Principle 5: Safer Solvents and Auxiliaries

2245

1252

Principle 10: Design for Degradation

0.0

0.0

Principle 12: Inherently Safer Chemistry for Accident Prevention

2516

220

Aggregate Score*

100

44

*Aggregate Score is calculated by averaging each category’s scores and summing three category scores to get the single score. Then this will be further normalized (divided by 50) to get an aggregate score from zero to 100 scales (zero being the most desired).

 

The GCM is advantageous over existing approaches because it provides metrics that are (1) inexpensive to implement with readily available data, (2) based on generally accepted industry practices when available, and (3) easy to communicate, both method and results, to customers. Sustainability programs that implement the proposed approach should anticipate the following benefits:

  • Measurement: Ability to use on-hand data sources or establish straightforward data collection programs
  • Calculations: Ability to utilize well-defined metrics to calculate the benefits of the 12 principles of green chemistry
  • Communication: Ability to transparently communicate greener alternatives to customers

 

Based on the feedback from customers, MilliporeSigma is currently working on expanding DOZNsystem (DOZN2.0) so customers can screen their products/processes to get DOZN scores. This would help our customers select the greener products for their research/manufacturing to promote sustainability.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Juan Colberg, Green Chemistry Leader/Senior Director of Chemical Technology, Pfizer; Javier Magano, Principal Scientist, Pfizer; and John Wong, Research Fellow, Pfizer

 

2012 marked the 10-year anniversary of Pfizer’s Green Chemistry Program, a program that focuses on education, innovation, solvent and waste reductions, the use of safer chemistry, greener processes, cost savings, and colleague engagement. Now, five years on from the 10-year anniversary, our Green Chemistry Program continues to promote, internally and externally, the selection and use of environmentally preferable chemicals, eliminating waste and conserving energy in our chemical processes.

 

As Pfizer’s portfolio evolves, so does its Green Chemistry Program. Efforts are not narrowly focused on small molecules for the Pfizer Innovative Health portfolio, but broadly include Biopharma and the Essential Health portfolios as well. An important part of the program’s success has been the commitment from Pfizer to provide and support the creation of ways to share knowledge, best practices and techniques across the organization, as well as educating future chemists and engineers in colleges and universities.

 

As part of these efforts, we have engaged our internal and external communities with a series of educational workshops to promote the application of green chemistry principles and the use of more environmentally sustainable technologies and approaches.

 

Green Chemistry Workshops at Pfizer

 

Education is one of the key elements of Pfizer’s Green Chemistry Program. Recognizing the importance of green chemistry education, Pfizer has hosted or participated in at least one workshop annually beginning in 2003.

 

From 2003 to 2006, workshops were held at the Pfizer R&D site in Groton, Connecticut. These workshops, titled “Sustainable Chemistry in the Pharmaceutical Industry,” began with a reception and dinner on the first day and featured a keynote address. The second day was a full day featuring presentations and interactive breakout sessions.

 

John Warner was an important participant in these workshops and presented “The 12 Principles of Green Chemistry: From Philosophy to the Flask.” Pfizer colleagues gave presentations on various topics involving the application of green chemistry in the development of Pfizer drugs. The breakout sessions gave students the opportunity to apply their knowledge of green chemistry to case studies based on Pfizer drugs. For instance, the case studies presented during the breakout sessions in 2004 were based on sertraline and sildenafil, the active pharmaceutical ingredients in Zoloft® and Viagra® respectively.

 

Participants in the workshops were selected from colleges and universities in the Northeast. Participation in 2004 was similar to the other years in which this workshop was conducted and included 28 students from 13 institutions in six states (Connecticut: Connecticut College, UCONN, University of St. Joseph; Massachusetts: Bridgewater State, UMASS Amherst, UMASS Boston, Gordon College, Simmons College, Suffolk University, Worcester Polytechnic Institute; New Hampshire: University of New Hampshire; Rhode Island: University of Rhode Island; Vermont: University of Vermont). Overall, these workshops hosted at the Pfizer R&D site in Groton were well received based on feedback from students. Notably, two participants from the 2004 workshop became Pfizer colleagues.

 

Picture4.png

Pfizer has also promoted green chemistry education outreach activities in other sites across the U.S. and Europe.

 

Workshop on Wheels (WOW)

 

With the great success of the Pfizer green chemistry workshops hosted in Groton, we decided to expand the program by engaging faculty members and reaching students from a broader range of disciplines. In 2007, the Groton Green Chemistry Team conceived the “Workshop on Wheels (WOW),”in which the workshop was set to be conducted at a college or university with a small team of Pfizer colleagues. An important element of “WOW” was the active engagement of faculty and students in organizing and conducting these workshops.

 

The first “WOW” was held at the University of Puerto Rico in 2007, hosted by Professor Ingrid Montes (currently Director-at-Large, ACS Board of Directors), followed by one in UCONN hosted by Professor Amy Howell. Since 2007, Pfizer has partnered with nine institutions (Boston University, Harvard University, Northeastern University, UMASS Boston, University of Rhode Island, Wesleyan Univeristy, Worcester Polytechnic, and Yale University) to bring “WOW” to their campuses. The “WOW” held at UMASS Boston in 2016 is the subject of a previous Nexus article.

 

Pfizer remains committed to green chemistry education and is planning a return trip to University of Rhode Island for its 2017 “WOW,” hosted by Professor Brenton DeBoef.

 

Workshop Focus Shifting to New, Greener Technologies

 

While the format of Pfizer’s green chemistry workshops has remained consistent, with presentations by Pfizer colleagues and invited speakers as well as an interactive breakout session, the focus of the topics has shifted from a basic application of the 12 Principles to applications of novel, greener technologies.

 

Thus, the last few years have seen the development of a number of talks by green chemistry team colleagues that cover diverse and increasingly important areas of chemistry, leading to more environmentally benign processes that have become some of the workshop attendees’ favorite topics.

 

  • Biocatalysis: The use of enzymes in drug manufacturing has seen a resurgence in recent years thanks to enzyme engineering, resulting in highly-active and versatile biocatalysts that enable highly efficient processes. In addition, due to the chiral nature of enzymes, these catalysts are particularly well-suited for the generation of chiral centers in the products, which is of special interest in the pharmaceutical industry. A great example that is analyzed by the attendees of the “WOW”breakout sessions is a route to pregabalin (LyricaTM), in which the enzyme is used to resolve a diester. This then allows for the separation of the compound with the desired chirality leading to pregabalin, whereas the compound with undesired stereochemistry undergoes racemization and can be recycled and fed back into the process with the consequent improvements in yield and waste reduction. Another outstanding example of biocatalysis application that is presented is the synthesis of the side chain of statins, such as Lipitor, which replaced the original reduction to generate a stereocenter using toxic and pyrophoric chemicals.

  • Flow chemistry: Most of the current processes under development or at the commercial stage in the pharmaceutical industry are run in batch mode. One reason for this is familiarity – process chemists are more familiar with batch processing and the large investment made over years in the existing batch process infrastructure at pharmaceutical plants. However, it is becoming increasingly evident that processes on flow have many advantages over batch mode, including improved safety when dealing with unstable reagents, smaller investments in equipment, lower solvent consumption, and efficient heat removal from exothermic reactions. Pfizer, as well as other pharmaceutical companies and academic institutions, is investing heavily in this technology as a way to manufacture drugs “on-demand” to reduce cost and improve carbon footprint.

  • Catalysis using non-precious metals: Catalysis is one of the 12 Principles of Green Chemistry and is frequently used in the synthesis of drug candidates. Unfortunately, most of the metals currently used in catalysis are precious metals, such as palladium, iridium, rhodium, platinum and ruthenium. Besides cost, a concern related to the use of these metals is their toxicity, which requires extensive purification protocol to bring levels down to acceptable values with the concomitant increase in waste, as well as their long-term supply due to their scarcity in the Earth’s crust.

    Pfizer, as part of an alliance with other pharmaceutical companies, has embarked in an ambitious program to replace those precious metals with more sustainable alternatives, such as iron, nickel and copper. These three metals are abundant, inexpensive, and display lower toxicity than precious metal catalysts, which contribute to turning catalysis into an even more attractive technology for the synthesis of drug candidates.

    Pfizer colleagues have discussed this topic during their presentations at “WOW” by showing examples from literature and comparing advantages and drawbacks for the use of these metals. Though there is still a long way to go in replacing precious metals altogether with greener alternatives, progress is being made almost daily in both academia and industry, and theses presentations intend to inform the audience about the rewards of employing iron, nickel and copper in catalytic processes and the long-term risks of not further investing now in those technologies.

 

Passion for green chemistry continues to be the driver for so many Pfizer colleagues around the world to support these types of activities – passion that has continued growing across all these years since the program’s creation.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

This article was originally published on VentureWell's blog.

 

shutterstock_49448494-910x620.jpgGreen chemistry is evolving to respond to a host of health and environmental challenges. Like most complex social issues, future science and technology professionals and entrepreneurs will be charged with addressing these problems through innovation. They will have their work cut out for them, but there will be tremendous demand for their solutions.

 

According to Pike Research, green chemistry represents a market opportunity that will soar to nearly $100 billion by 2020. But will industry be prepared to meet this opportunity? Are tomorrow’s scientists equipped with an understanding of green chemistry principles? We spoke with John Warner, one of the founders of the green chemistry field, about the competitive advantage chemistry students will have in industry, and how universities can better prepare graduates to meet the increasing demand for the discipline.

 

Can you illustrate the demand for green chemists in industry?

 

I started a green chemistry program at the University of Massachusetts. It had everything you would find in a normal chemistry program but I added several one-semester classes including mechanistic toxicology and environmental mechanisms. During my time at UMASS, about 120 students at various levels –  undergrad and grad – worked in my labs. The average time it took one of those students to get a job in industry was only two days. The longest it took a student to secure a job was two weeks–and that’s because she turned down the first six job offers. Companies continue to ask if I know of any graduating green chemists.

 

From your perspective, how can faculty and universities respond to this increased demand for green chemists?

 

The simple answer is to add green chemistry to the curriculum in some way: a stand-alone class, a lab, or some other way to share best practices.

 

There also needs to be a shift in mindset. Historically, chemists were taught to develop ways to contain, control and limit the amount of toxic chemicals emitting from reactors and products. They didn’t consider making safer materials. They believed that chemistry was inherently dangerous. The curriculum needs to think about chemistry through a sustainable lens. It should focus more on what makes molecules and materials dangerous, and less on how to limit the exposure to dangerous things.

 

There’s also an opportunity to find more overlap and interaction between different disciplines such as toxicology and environmental health sciences. For decades people have been learning what makes molecules and materials hazardous. There are countless textbooks written. There are conferences where practitioners share ideas and research. However, each discipline rarely interacts. They don’t even really share the same language. Yet it’s the overlap of these two sciences that define green chemistry. More integration between disciplines means more opportunities to bridge the gap between chemistry, hazard and design.

 

What are some immediate needs for green chemists in industry?

 

There is a great disconnect between true sustainability and design. The design community is often tasked with developing sustainable products that won’t harm the environment, require little natural resources to produce and maintain, and so on. Unfortunately, many of the building blocks aren’t sustainable. The materials are made with toxic chemicals. How did this happen? Chemists are the only people in the world who are capable of inventing a new material, yet they are not part of the design process. They need to be part of the discussion from the beginning.

 

On the bright side, this disconnect creates opportunities for green chemists. The way products are currently developed is backwards. Designers are restricted to use what’s available to build something. Instead, chemists should be working on sustainable materials to hand off to the design community. They can figure out how to use the materials in various applications.  To drill down further, there are also immediate opportunities in the pharmaceutical industry such as developing new, more efficient synthetic methods for active pharmaceutical ingredients. In the industrial sector, there’s a great need for new materials and application mechanisms that avoid VOCs and remove or replace other hazardous materials used in construction applications.

 

What are the most important sectors that need to be improved from a green chemistry perspective?

 

Education.

 

Instead of deciding which sectors, technologies, materials, and endpoints in need of improvement, we must focus on how we train the scientists in the first place. If you teach chemists how to be more sustainable from the start, there’s a greater chance that anything they make throughout their career will be more sustainable.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

News Roundup Jun 2-22.png

New Method of Extracting Metals from Raw Materials

June 7, 2017 | Science Daily

A team of chemists has developed a way to process metals without using toxic solvents and reagents. The system, which also consumes far less energy than conventional techniques, could greatly shrink the environmental impact of producing metals from raw materials or from post-consumer electronics.

 

Biodegradable Microbeads Prevent Ocean Pollution

June 8, 2017 | University of Bath

Scientists and engineers from the University of Bath have developed biodegradable cellulose microbeads from a sustainable source that could potentially replace harmful plastic ones that contribute to ocean pollution.

 

Business Benefits of Sustainable Chemicals Management

June 16, 2017 | GreenBiz

In tandem with the rise in interest in green chemistry, companies are increasingly looking to gain business value from sustainable chemicals management.  The key concepts: reducing risk from existing and emerging regulations while also helping to build consumer trust, meet customer demands and reduce testing costs.

 

Wind and Solar Combined Surpass 10% U.S. Electricity Generation

June 19, 2017 | C&EN

Wind turbines and photovoltaic arrays provided slightly more than 10% of U.S. electricity generation in March.  This marks the first time these two renewables combined have made a double-digit contribution to the nation’s generation of electricity, says a report from the U.S. Energy Information Administration.

 

Green Chemistry Efforts Honored

June 19, 2017 | C&EN

The 2017 Green Chemistry Challenge Awards hailed streamlined syntheses, dye-free printing, and more.  Five technologies were recognized and honored for their achievements and creativity at a ceremony held on June 12 at the National Academy of Sciences in Washington, D.C.

 

European Commission Publishes Catalog of Nanomaterials Used in Cosmetics on EU Market

June 19, 2017 | National Law Review

Regulation (EC) No. 1223/2009 on cosmetic products requires the European Commission to publish a catalog of all nanomaterials used in cosmetics placed on the market, indicating the categories of products and the reasonably foreseeable exposure conditions.

 

New Soluble Polymer Removes 93% of Toxic PFOA Chemicals from Drinking Water

June 20, 2017 | C&EN

Long-chain perfluorinated chemicals contaminate millions of Americans’ drinking water. These compounds are a legacy of industrial pollution and the use of firefighting foam at military bases and airports; they persist in the environment because of their strong carbon-fluorine bonds. Now scientists have designed a cross-linked polymer that might more effectively remove one of the more prevalent and harmful of these compounds, perfluorooctanoic acid.

 

Helium Shortage Looms

June 22, 2017 | C&EN

The blockade of Qatar that started on June 5 has shut down the source of 30% of the world’s helium, threatening another round of shortages and price increases for scientific instrument users. Helium is used to cool nuclear magnetic resonance magnets and as a carrier gas for gas chromatography and mass spectrometry. The element is also used in medical imaging and electronics manufacturing, as well as to float dirigibles.

Click here for more information on Helium: https://communities.acs.org/community/science/sustainability/green-chemistry-nex us-blog/blog/2017/02/16/critical-elements-series-helium-shortage-to-occur-in-the -next-25-50-years

Contributed by By Samantha A. M. Smith, Ph.D. Candidate, Department of Chemistry, University of Toronto

 

2017gce.jpgThe ACS Green Chemistry Institute®’s (ACS GCI) Green Chemistry and Engineering Conference (GC&E) was kicked off with two simultaneous workshops, one of which was tailored toward students and post-doctoral fellows. During this workshop, we were placed into a hypothetical situation where we had to explain why we wanted to attend the GC&E Conference to our department chair. This seemed trivial for me as a University of Toronto student because our department chair is so supportive of our interest in green chemistry, however I quickly realized during this session that that may be a special case. I would like to discuss the reasons why a student, who may or may not be interested in green chemistry, should attend this conference.

 

First, I would like to touch on the average student’s experience of conferences. Generally, the conferences students attend are either very small, student-oriented, and focused on a particular division, or they are large and sometimes overwhelming national meetings. Either way, we find ourselves sitting in the same few rooms listening to the endless technical talks focused on our fields of expertise. These conferences can further our knowledge of our fields, and they are great places for networking with professors and students. But what about industrial and governmental presence? What about direct applications on a commercial scale? What about the toxicological effects or the measurements of such effects? These are not often the focus at conferences. They are generally geared toward the discoveries and results of chemical reactions, computations, and educational techniques.

 

Picture1.png

The first thing I noticed at the GC&E Conference was that the atmosphere was very different. One of the first talks I attended was an intimate and rather unique conversation between the audience and the “Fathers of Green Chemistry,” John Warner and Paul Anastas, which was focused on the subject of the absence of toxicology in chemistry curricula. John Warner stated that, “If chemists were in toxicology, a lot of our problems would be solved.” Unfortunately, toxicology is not required for a chemistry degree.

 

In attending the GC&E Conference, I have been exposed to many different fields of chemistry that I was nott aware existed. I attended a talk on the recycling of carpet materials and another on the recycling of electronic waste. I have learned about how local food waste (biomass) can be transformed into components in beauty products and what challenges the apparel and footwear sectors are facing and how they are approached. Chemists from all sectors are discussing their challenges, experiences and innovations with regard to toxicology, waste, environmental and heath impacts, and complying with regulations.

 

The GC&E Conference was much smaller than I had anticipated in that the number of participants was drastically different than I am used to. A large percentage of speakers were from the chemical industry sector, which is something that is lacking at most chemistry conferences. The size was small enough that networking was easy and meeting very important people (directors of organizations, for example) was not really a challenge. Many times, I ran into a particular director who at a larger conference, I would not have been able to connect with. Not only is this great for me from a networking perspective, but because of the industrial presence, I gained an understanding of the challenges companies are facing and the current sustainable practices they use. I can take these perspectives back to the lab and apply them to my research, using them as tools to focus my research more toward solutions to common sustainability challenges.

 

The ACS GCI GC&E Conference has given me an experience difficult to replicate. I have connected with professionals well-advanced in their careers, chemists from a variety of industries, the “Fathers of Green Chemistry,” and many others whose passions are focused toward sustainability. I have listened to topics not normally present at chemistry conferences, learned about current challenges faced in industry, and analyzed what needs to fundamentally change in our educational sector. Most importantly, I have learned that sustainability is being implemented everywhere and that it is a worldwide goal.

 

save-the-date-2018.png

So, for those of you who are passionate about green chemistry, or even those of you just beginning to think about green chemistry, I believe it is a conference that you should attend, as the benefits surpass the usual student experiences. GC&E will expose you to a widespread collection of exemplary science and discussion, which is proof enough that green chemistry is not only a sustainable movement, but it is also becoming a reality in academia and industry.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

hancock-winners.pngTwo U.S.-based students have received the 2017 Kenneth G. Hancock Memorial Award, presented by the American Chemical Society Green Chemistry Institute® (ACS GCI). Each recipient receives $1,000 and travel support to attend the ACS GCI Green Chemistry & Engineering Conference (GC&E). The award was formally presented at the U.S. EPA's Green Chemistry Challenge Awards Ceremony on June 12, 2017 in Washington, D.C.

 

This year’s recipients are Julian West and Adam Fisher.

 

Julian West is a Ph.D. candidate at Princeton University working on catalytic transformations in Professor Erik Sorensen’s group. His research, titled “Design of New, Sustainable Chemical Reactions through Earth Abundant Element Photocatalysis,” examines the application of earth-abundant elements to a variety of synthetic problems of high interest to academic and industrial chemists. As part of his award, Julian attended the GC&E Conference (GC&E) in Reston, Va. from July 12-15, 2017. He describes the conference as a “tremendous benefit for [his] career that will enable [him] to pursue green chemistry research at the highest level going forward.” Julian’s award was sponsored by the National Institute of Standards and Technology.

 

Adam Fisher is a marine systems engineering student interested in material science. His project is focused on utilizing magnetic carbon nanocomposite for water treatment. Adam presented his research during the poster session at the GC&E Conference. His presentation was on the use of this nanocomposite to remove aspirin from water in an effort to address the concerns of pharmaceuticals being found in small concentrations in drinking water. Fisher is a rising senior at the United States Merchant Marine Academy in Kings Point, N.Y. His award was sponsored by the ACS Division of Environmental Chemistry.

 

If you are interested in applying for the Hancock Memorial Fellowship or another green chemistry award, please take a look at the ACS GCI awards page for application deadlines and details.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Contributed by Siddharth V. Patwardhan, Ph.D., Senior Lecturer, Department of Chemical and Biological Engineering; Joseph R. H. Manning, Ph.D. Candidate in Chemical Engineering, University of Sheffield

 

This blog is based on a recent article and associated cover feature: An eco-friendly, tunable and scalable method for producing porous functional nanomaterials designed using molecular interactions, ChemSusChem, 10(8), 1683-1691, 2017. For more information, visit the Green Nanomaterials Research Group.

 

IntroPic.png

 

Summary

Nanosilicas have the potential to solve a number of pressing industrial issues, but are locked away because of wasteful and prohibitively expensive synthesis conditions. By contrast, nature produces far more complex silica under ambient conditions. By combining natural silica with computer simulations, we have discovered a method to produce green nanosilica, unlocking their industrial potential once and for all.

fig1.png

 

As an industrial material, silica is widely used as an inert filler and texturing agent in everyday products ranging from car tires to toothpaste, drug tablets, and powdered cosmetics and foods. Since the 1990s, scientists have been working on new, more complex nanosilica materials to improve upon these applications and to enable more high-value applications, such as soaking up pollutants from the air and water, capturing carbon from industrial exhausts, catalytically cracking crude oil into petroleum products, and storing medicines for slow release in the body. The key difference between currently-used industrial silicas and the new nanosilicas is a tiny pattern of holes on the material’s surface (Figure 1). These holes are a perfect size for the material to act like a sponge and soak up or release molecules exactly when and where they are needed.

 

But these advantages come with a cost, specifically making the synthesis much more complex and expensive. To build up this spongy structure, a molecular template called a surfactant is used during synthesis (Figure 2). The surfactant helps to direct the shape of the material around it on the nanoscale as it assembles, but using it both slows down the synthesis and increases the energy required for the material assembly. Furthermore, these surfactants need to be removed before the sponge-like structure can be accessed, adding a new step to the process.

 

fig2.png

 

Due to how tightly-bound the template molecules are to the structure, the commonest and most effective way to remove them is to destroy them with heat. This has two big environmental and cost drawbacks: First, this requires heating the material to over 500oC for an extended time, which is very energy-intensive; second, once it has been destroyed, the template chemicals cannot be reused to make more nanosilica, increasing the cost significantly as the surfactants are the most expensive reagent in the process. All of this adds up to a more complex and environmentally damaging two-step synthesis, locking away the nanosilicas from seeing widespread use.

 

This creates a stark contrast with natural silica materials – there are several microorganisms that create highly detailed and complex silica cell walls around themselves (Figure 3). Additionally, this occurs in the ocean, which has much milder conditions compared to those used in the lab.

 

fig3.png

 

The way these microorganisms can manage this amazing feat is through specialised proteins that, in addition to acting like a far more complex template than the surfactants used in artificial nanosilicas, also give the chemical reaction a huge speed boost to boot.

 

So if nature can do that, why can’t we? The simple answer is that we can. Using template molecules whose structure is inspired by the natural proteins, we can produce silica faster, greener and cheaper than current industry methods (Figure 4) while retaining the quality of nanosilicas.

 

fig4.png

While using such “bio-inspired” templates is an excellent solution to the drawbacks of nanosilica synthesis, there remains the need to remove the templates from the material. Simply aping the methods of purifying other nanosilicas like heat treatment methods negate much of the benefits of adopting this bio-inspired approach, as well as blocking their use for more specialised applications, such as the storage of delicate biomolecules.

 

Instead, in our most recent study, we took a step back and studied what makes the bio-inspired template so good at its job in the first place. Using computer simulations of the template and silica, we found that the two species are attracted to each other by their opposite charges, which is the source of both the structure direction and speed boost. What we also found is that this attraction is highly dependent on the solution chemistry – simply washing the materials in acidic environment (contrasting with the neutral or slightly alkaline reaction conditions) acted like a switch to unstick the bio-inspired templates from the nanosilica, leaving behind a pure, ready-to-use material, and similarly, a ready-to-reuse template molecule. This is specific to the type of interaction between the template and silica, meaning that this discovery was only possible because we used the bio-inspired templates rather than the surfactant templates whose interactions are much more difficult to switch off.

 

The new washing technique is a clear improvement over purification by heat treatment, as washing both eliminates the energy costs and allows for the templates to be used as a catalyst rather than a reagent, both of which are important principles of green chemistry. Environmental improvements notwithstanding, the washing method has some significant technical advantages over the previous methods, too. By fine-tuning the strength of the washing acid, we could choose to only remove a certain amount of our template, leading to new composite materials in a much simpler, less laborious way than before (where the surfactant had to be fully removed prior to a separate reintroduction of active chemicals into the structure) (Figure 5).

 

fig5.png

 

Overall, this new technique has unlocked the possibility for nanosilicas to be upscaled to industrial levels. By harnessing the power of computer simulations, and applying green principles to the technique design, this study has cut down energy costs of material purification significantly and avoided damage to the template, allowing for it to be reused. Not only that, but the elimination of harsh conditions during all parts of the process enables new applications of nanosilica in carrying fragile enzymes or other biomolecules.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

European PET Recycling Streams to Begin Incorporating PEF News Roundup May13-25.png

May 24, 2017 | Green Chemicals Blog

The European PET Bottle Platform (EPBP) – a voluntary initiative of industry organizations representing waste collectors, plastic recyclers, PET material producers and brand owners, gave an interim approval for the recyclability of polyethylene furanoate (PEF). Following EPBP’s assessment, PEF bottles are expected to be disposable and recyclable through existing recovery systems the same way as polyethylene terephthalate (PET).

 

Biopolymer to be Used in Household Recycling Containers

May 22, 2017 | Sys-Con Media

In a joint venture between two thermoplastic resin and biopolymer producers, Solegear Bioplastic Technologies Inc and Braskem will produce and distribute a series of household recycling containers using Braskem's I'm green (TM) Polyethylene under Solegear's Good Natured(TM) brand.

 

New Carbon-Fiber Technique uses Lignin Waste as a Feedstock

May 19, 2017 | Seeker

The new technique works by separating high-density lignin from the jumble of waste material put out by paper mills and biorefineries. This gives manufacturers a viable way to make high-quality carbon fiber cheaply, said researcher Shuhua Yuan, associate professor of plant pathology and microbiology at Texas A&M.

 

New Eco-friendly Insecticide Made from Brazilian Plants

May 17, 2017 | Middle East North Africa Financial Network

Dr. Pires de Lima and his team are using natural waste from locally sourced cashew nuts and castor oil from Brazil to produce environmentally friendly insecticides against mosquitoes carrying Zika and Dengue fever. This new biobased product is a sustainable alternative to conventional, substantially toxic insecticides.

 

Current Green Chemistry Regulations on the U.S. State Level

May 16, 2017 | National Law Review

This article discusses current and potential state green chemistry regimes that have developed recently, as well as some chemical-specific laws, and assesses what might be on the horizon now that TSCA reform has been enacted.

Contributed by Oleg Figovsky, Director of Research and Development, Hybrid Coating Technologies; and Alexander Leykin, Olga Birukova, Raisa Potashnikova, and Leonid Shapovalov, Polymate Ltd. International Nanotechnology Research Center

 

Non-isocyanate Hybrid Green Polyurethane™ coatings and foam can be used for many industrial and commercial applications.

 

Polyurethanes (PUs) are polymers that are widely used in a variety of industrial and consumer applications, including foam and coatings. PUs are now made by reacting two components, one of which has toxic isocyanate groups. Isocyanates are especially hazardous to workers who spray-apply PU paints and foam and also to the environment.

 

In recent years, intensive research and development has been carried out to prepare isocyanate-free urethanes and polyurethanes [1-3]. Fig. 1 shows the basic reaction “five-membered cyclic carbonate – amine” for producing non-isocyanate polyurethanes (NIPU) with β-hydroxy urethane (HU) functionalities to form the secondary and primary hydroxyl groups:

 

fig1.png

Hybrid Coating Technologies (HCT) and its strategic partner Polymate INRC are making significant efforts to produce NIPU materials suitable for practical use (coatings, foam, adhesives, sealants, etc.).

 

The main areas of research and development of HCT – Polymate are the following:

  • polymers with HU groups in the main chain
  • graft copolymers with HU groups in the side chains
  • oligomer compositions modified by HU-containing additives.

 

From raw material point of view, great attention has been paid to renewable resources as well as the use of silicon-organic compounds.

 

Most of the development has focused on oligomer compositions (epoxy, acrylic, etc.) modified by HUs. HU-modifier (HUM) is a product of a reaction between a primary amine (one equivalent of the primary amine groups) and a monocyclic carbonate (one equivalent of the cyclic carbonate groups). HUM is not bound chemically to the main polymer network and is represented by the following formula:

 

fig2.png

A series of products based on both fossil and renewable raw materials has been developed. Among them, there are HUMs on the base of vegetable oils and products of their processing, organosilanes-based HUMs and so on. With the use of HUMs, a number of isocyanate-free products and perspective formulations have been created: indoor and outdoor paints and flooring; spray and pouring (rigid, semi rigid and flexible) foam for insulation, packing, etc.; and radiation-curable coatings.

 

A method of synthesis of novel, non-isocyanate polymers with lengthy epoxy-amine chains, pendulous hydroxyurethane units and a controlled number of cross-links was also proposed [1]. A cured hybrid epoxy-amine hydroxyurethane-grafted polymer with a presumably linear structure was prepared, and the testing of these polymers demonstrated increased flexibility. They may be used for various applications, for example, in the manufacturing of synthetic/artificial leather, soft monolithic floorings and flexible foam.

 

While non-isocyanate foam is still in the research stage, hybrid coatings, comprised epoxy and acrylic matrix modified by NIPU are commercially available. Under the name Green Polyurethane™, an isocyanate-free and phosgene-free alternative to conventional materials has been provided that represents the successful application of HNIPUs in the industry.

 

References

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

Leading up to the GC&E Conference we will be posting interviews with our 2017 GC&E Conference organizers to learn a little more about them and the excellent sessions you can look forward to at this year’s conference!

 

group.pngSaskia van Bergen, Green Chemistry Scientist, Washington State Department of Ecology

Jeffrey Whitford, Head of Corporate Responsibility, MilliporeSigma

Amy Cannon, Ph.D., Executive Director, Beyond Benign

Session: Breaking the Silos: Public-Private Sector Collaborations to Advance Green Chemistry

 

Q: What motivates you to work in the green chemistry & engineering space?

A: Saskia van Bergen: I think the easier question would be “what doesn’t motivate you to work in this space?” To spare you from having to edit down a novel, here are three of the motivators:

  • The principles – When I was in school, I was interested in the environment, chemistry and ceramics. I majored in chemistry and then received a Master’s from a graduate group rather than a department  (agricultural and environmental chemistry, where the commonality was applied chemistry). The majority of the jobs I have held were tied to analytical chemistry. When I first learned about the principles of green chemistry, they resonated with me and enabled me to see that chemists can be proactive rather than just reactive, which was something I felt was missing: not being limited to jobs of developing methods to monitor chemicals with negative impacts on human health and the environment or analyzing actives in natural products, but innovating and designing safer chemicals and products with less material.
  • The people – There are many rock stars (both individuals and teams) working in this space. It is inspirational to talk with, work with and listen to individuals in this field. If you have not attended a GC&E Conference yet, register and you will see.
  • Opportunities for collaboration to advance green chemistry – They are endless.

Jeffrey Whitford: The potential for impact: I look at what we do as the ultimate potential multiplier. If we are able to get the right tools into researchers’ hands to reduce environmental impact, the scale can be amazing!

 

Q: In one sentence, describe the session you are organizing at GC&E.

A: The session “Breaking the Silos: Public-Private Sector Collaborations to Advance Green Chemistry” will highlight collaborative efforts from academia, industry, government and non-profits, including the added value and challenges the collaborations provided.

 

Q: What will attendees learn at your GC&E session? What makes it unique?

A: After hearing examples of a number of types of collaborative partnerships, attendees will learn from the presenters’ experiences how to approach various collaborations with an increased chance of success. This session is not unique, but attendees will hopefully leave with additional ideas of groups they can collaborate with to leverage efforts. This session aims to showcase these collaborations and hopefully spark the desire for more collaboration, on a bigger scale, to move the needle.

 

Q: What is your favorite aspect of the GC&E Conference (or what are you looking forward to)?

A: Saskia van Bergen: The energy of the conference and hearing applied examples of green chemistry.

Jeffrey Whitford: Bringing people together who have a common goal and hearing the amazing progress people are making.

 

Q: What are you currently focused on in your work or research?

A: Saskia van Bergen: Like most organizations, there are multiple efforts in green chemistry, but a fairly common theme is partnerships. One of the current efforts we are working on is the development of training materials in green chemistry and safer alternatives for various audiences.

Jeffrey Whitford: Expanding the availability of greener alternatives and the ability to apply quantitative analysis

 

Q: If you weren't a chemist, what would you be doing?

A: Saskia van Bergen: If skills and salary were not needed, I would have multiple projects that involve problem-solving and connecting efforts…. some of which are location independent that would allow me more time with my kid.

Jeffrey Whitford: Well, I am not! So exactly what I am doing today at the Head of Corporate Responsibility for MilliporeSigma

 

Q: When you aren't at work, how do you spend your free time?

A: Saskia van Bergen: When I am not at work, I like to hang out with my four-year-old. While I like to go kayaking, hike and garden, I am also happy to use my imagination, play hide-and-seek and sing with heart, but not talent.

Jeffrey Whitford: I just moved to Germany, so it is a lot of exploring and trying to learn German.

 

 

“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.

 

To read other posts, go to Green Chemistry: The Nexus Blog home.

By Mary M. Kirchhoff, Ph.D., Director, ACS Green Chemistry Institute®; Executive Vice President of Scientific Advancement, ACS

 

My colleagues and I at the ACS Green Chemistry Institute® (GCI) are very excited that the 2017 Green Chemistry & Engineering Conference is less than three weeks away! The conference will be held in Reston, Virginia from June 13-15, 2017. The theme of “Making Our Way to a Sustainable Tomorrow” has attracted 345 oral and poster presentations. The onsite registration fee is higher than the standard registration fee (available through June 10), and I encourage you to register today at http://www.gcande.org.

 

The ACS GCI works with the GCI Roundtables to advance the implementation of green chemistry across a number of industrial sectors. The newest of the GCI Roundtables is the Biochemical Technology Leadership Roundtable (BTLR), which recently helped organize a Bio-based and Renewable Chemicals Conference in conjunction with the Delaware Sustainable Chemistry Alliance (DESCA). Dr. Bryan Tracy, Chair of DESCA, and Dr. David Constable, Science Director of the ACS GCI, served as conference co-chairs.

 

The conference, which was held May 10-11 in Wilmington, Delaware, attracted an audience with broad interests in renewable chemistry research and manufacturing. Many of the participants were current or former employees of DuPont, which has a strong emphasis on developing sustainable products. Speakers reviewed the landscape today with respect to biomass utilization and explored the future of sustainable alternatives. Panel discussions addressed the business and technical aspects of bio-based and renewable chemicals.

 

Several speakers highlighted entrepreneurial opportunities available in Delaware. The Delaware Innovation Space, for example, offers an “innovation ecosystem” to support start-up companies. DESCA, the conference co-organizer, embraces its mission to “foster sustainable innovation among key stakeholders in the public and private sectors.” The ability of the bio-based and renewables market to positively impact Delaware’s economy was evident in remarks delivered by Delaware Governor John Carney and Congresswoman Lisa Blunt Rochester. We should all be so lucky to have our elected officials take such an interest in chemistry!

 

The conference demonstrated the importance of convening scientists, engineers, entrepreneurs, and financial backers to address the challenges and opportunities – some of which are unique to the local area – of bio-based and renewable chemicals. Such collaborations can help accelerate the development and implementation of greener technologies.

 

See you in Reston!

mary-sig.png

Filter Blog

By date:
By tag:
close mobile menu