Ximao Feng - Spectroscopic Study of the CP43' Complex and the PSI -CP43' Supercomplex of the Cyanobacterium Synechocystis PCC 6803

Document created by Ximao Feng on Aug 22, 2014
Version 1Show Document
  • View in full screen mode

  Publication Details (including relevant citation   information):

  (1) Stewart, I.; Falconer, I. R. In Oceans and human health:   risks and

  remedies from the seas; Wash, P. J., Smith, S. L., Fleming, L.   E., Eds.;

  Academic Press: New York, 2008; pp 271296.

  (2) Grossman, A. R.; Schaefer, M. R.; Chiang, G. G.; Gollier, J.   L. In

  The Molecular Biology of Cyanobacteria; Bryant, D. A., Ed.;   Kluwer

  Academic Publishers, Dordrecht, 1994; pp 487517.

  (3) Bibby, T. S.; Nield, J.; Barber, J. Nature 2001, 412,   743–745.

  (4) Melkozernov, A. N.; Bibby, T. S.; Lin, S.; Barber, J.;   Blankenship,

  R. E. Biochemistry 2003, 42, 3893–3903.

  (5) Andrizhiyevskaya, E. G.; Schwabe, T. M. E.; Germano, M.;

  D’Haene, S.; Kruip, J.; van Grondelle, R.; Dekker, J. P. Biochim.   Biophys.

  Acta 2002, 1556, 265–272.

  (6) Dang, N. C.; Zazubovich, V.; Reppert, M.; Neupane, B.;   Picorel,

  R.; Seibert, M.; Jankowiak, R. J. Phys. Chem. B 2008, 112,   9921–9933.

  (7) Bibby, T. S.;Nield, J.; Barber, J. J. Biol.Chem. 2001, 276,   43246–43252.

  (8) Boekema, E. J.; Hifney, A.; Yakushevska, A. E.; Piotrowski,   M.;

  Keegstra, W.; Berry, S.; Michel, K. P.; Pistorius, E. K.; Kruip,   J. Nature

  2001, 412, 743–745.

  (9) Nield, J.; Morris, E. P.; Bibby, T. S.; Barber, J. Biochem.   2003,

  42, 3180–3188.

  (10) Zhang, Y.; Chen, M.; Church, W. B.; Lau, K. W.; Larkum,

  A. W. D.; Jermiin, L. S. Biochim. Biophys. Acta 2010, 1797,   457–465.

  (11) Sandstr€om, S.; Ivanov, A. G.; Park, Y. -Y.; €Oquist, G.;   Gustafsson,

  P. Physiol. Plant 2002, 116, 255–263.

  (12) Kouril, R.; Yeremenko, N.; D’Haene, S.; Yakushevska, A. E.;

  Keegstra, W.; Matthijs, H. C. P.; Dekker, J. P.; Boekema, E. J.   Biochim.

  Biophys. Acta 2003, 1607, 1–4.

  (13) Andrizhiyevskaya, E. G.; Frolov, D.; van Grondelle, R.;   Dekker,

  J. P. Biochim. Biophys. Acta 2004, 1656, 104–113.

  (14) Aspinwall, C. L.; Duncan, J.; Bibby, T.; Mullineaux, C. W.;

  Barber, J. FEBS Lett. 2004, 574, 126–130.

  (15) Michel, K. -P.; Pistorius, E. K. Physiol. Plant 2004, 120,   36–50.

  (16) Sarcina, M.; Mullineaux, C. W. J. Biol. Chem. 2004, 279,

  36514–36518.

  (17) Dekker, J. P.; Boekema, E. J. Biochim. Biophys. Acta 2005,   1706,

  12–39.

  (18) Ihalainen, J. A.; D’Haene, S.; Yeremenko, N.; van Roon, H.;

  Arteni, A. A.; Boekema, E. J.; van Grondelle, R.; Matthijs, H. C.   P.;

  Dekker, J. P. Biochemistry 2005, 44, 10846–10853.

  (19) Kouril, R.; Arteni, A. A.; Lax, J.; Yeremenko, N.; D’Haene,   S.;

  R€ogner, M.; Matthijs, H. C. P.; Dekker, J. P.; Boekema, E. J.   FEBS Lett.

  2005, 579, 3253–3257.

  (20) Elli, A. F.; Jelezko, F.; Tietz, C.; Studier, H.; Brecht,   M.; Bittl, R.;

  Wrachtrup, J. Biochem. 2006, 45, 1454–1458.

  (21) Ivanov, A. G.; Krol, M.; Sveshnikov, D.; Selstam, E.;   Sandstr€om,

  S.; Koochek, M.; Park, Y. -I.; Vasil’ev, S.; Bruce, D.; €Oquist,   G.; Huner,

  N. P. A. Plant Physiol. 2006, 141, 1436–1445.

  (22) Murray, J. W.; Duncan, J.; Barber, J. Trands Plant Sci.   2006,

  11, 1360–1385.

  (23) Singh, A. K.; Sherman, L. A. Photosynth. Res. 2007, 93,   17–25.

  (24) van der Weij-de Wit, C. D.; Ihalainen, J. A.; van de Vijver,   E.;

  D’Haene, S.; Matthijs, H. C. P.; van Grondelle, R.; Dekker, J. P.   Biochim.

  Biophys. Acta 2007, 1767, 1393–1400.

  (25) Stork, T.; Michel, K. -P.; Pistorius, E. K.; Dietz, K. J. J.   Exp.

  Bot. 2005, 56, 3193–3206.

  (26) Yeremenko, N.; Kouril, R.; Ihalainen, J. A.; D’Haene, S.;   van

  Oosterwijk, N.; Andrizhiyevskaya, E. G.; Keegstra, W.; Dekker, H.   L.;

  Hagemann, M.; Boekema, E. J.; Matthijs, H. C. P.; Dekker, J. P.

  Biochemistry 2004, 43, 10308–10313.

  (27) Chen, M.; Bibby, T. S. Photosynth. Res. 2005, 86, 165–173.

  (28) Riley, K. J.; Zazubovich, V.; Jankowiak, R. J. Phys. Chem. B   2006,

  110, 22436–22446.

  (29) Berera, R.; van Stokkum, I. H. M.;D’Haene, S.; Kennis, J. T.   M.;

  van Grondelle, R.; Dekker, J. P. Biophys. J. 2009, 96, 2261–2267.

  (30) Zouni, A.; Witt, H. -T.; Kern, J.; Fromme, P.; Kraub, N.;

  Saenger, W.; Orth, P. Nature 2001, 409, 739–743.

  (31) Ferreira, K. N.; Maghlaoui, T. M.; Barber, J.; Iwata, S.   Science

  2004, 303, 1831–1838.

  (32) Loll, B.; Kern, J.; Saenger, W.; Zouni, A.; Biesiadka, J.   Nature

  (London, U.K.) 2005, 438, 1040–1044.

  (33) Guskov, A.; Kern, J.; Gabdulkhakov, A.; Broser, M.; Zouni,   A.;

  Saenger, W. Nat. Struct. Mol. Biol. 2009, 16, 334–342.

  (34) Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Nature

  2011, 473, 55–60.

  (35) Zazubovich, V.; Jankowiak, R. J. Lumin. 2007, 127, 245–250.

  (36) Jeanjean, R.; Zuther, E.; Yeremenko, N.; Havaux, M.;   Matthijs,

  H. C. P.; Hagemann, M. FEBS Lett. 2003, 549, 52–56.

  (37) Porra, R. J.; Thompson, W. A.; Kriedemann, P. E. Biochim.

  Biophys. Acta 1989, 975, 384–394.

  (38) Groot, M.; Frese, R. N.; de Weerd, F. L.; Bromek, K.;

  Pettersson, Å.; Peterman, E. J. G.; van Stokkum, I. H. M.; van   Grondelle,

  R.; Dekker, J. P. Biophys. J. 1999, 77, 3328–3340.

  (39) Jankowiak, R.; Zazubovich, V.; R€atsep, M.; Matsuzaki, S.;

  Alfonso, M.; Picorel, R.; Seibert, M.; Small, G. J. J. Phys.   Chem. B

  2000, 104, 11805–11815.

  (40) Hughes, J. L.; Picorel, R.; Seibert, M.; Krausz, E.   Biochemistry

  2006, 45, 12345–12357.

  (41) Neupane, B.; Dang, N. C.; Acharya, K.; Reppert, M.;   Zazubovich,

  V.; Picorel, R.; Seibert, M.; Jankowiak, R. J. Am. Chem. Soc.   2010, 132,

  4214–4229.

  (42) Reddy, N. R. S.; Picorel, R.; Small, G. J. J. Phys. Chem.   1992,

  96, 6458–6464.

  (43) Jordan, P.; Fromme, P.; Witt, H. T.; Klukas, O.; Seanger,   W.;

  Kruss, N. Nature (London, U.K.) 2001, 411, 909–917.

  (44) Zhang, L.; McSpadden, B.; Pakrasi, H. B.; Whitmarsh, J. J.   Biol.

  Chem. 1992, 267, 19054–19059.

  (45) La Roche, J.; Boyd, P. W.; McKay, R. M. L; Gelder, R. J.   Nature

  1996, 382, 802–805.

  (46) Di Donato, M; van Grondelle, R; van Stokkum, I. H.; Groot,

  M. L. J. Phys. Chem. B 2007, 111, 7345–7352.

  (47) de Weerd, F. L.; van Stokkum, I. H. M.; van Amerongen, H.;

  Dekker, J. P.; van Grondelle, R. Biophys. J. 2002, 82, 1586–1597.

  (48) Reppert,M.; Zazubovich, V.; Dang, N. C.; Seibert,M.;   Jankowiak,

  R. J. Phys. Chem. B 2008, 112, 9934–9947.

  (49) Muh, F.; Renger, T.; Zouni, A. Plant Physiol. Biochem. (Issy   les

  Moulineaux, Fr.) 2008, 46, 238–264.

  (50) R€atsep, M.; Pieper, J.; Irrgang, K. -D.; Freiberg, A. J.   Phys. Chem.

  B 2008, 112, 110–118.

  (51) Herascu, N.; Najafi, M.; Amunts, A.; Pieper, J.; Irrgang, K.   -D.;

  Picorel, R.; Seibert,

  Abstract:

  The PSICP43' supercomplex of the cyanobacterium Synechocystis PCC   6803, grown under iron-starvation conditions, consists of a   trimeric core Photosystem I (PSI) complex and an outer ring of 18   CP430 light-harvesting complexes. We have investigated the   electronic structure and excitation energy transfer (EET)   pathways within the CP43' (also known as the isiA gene product)   ring using low-temperature absorption, fluorescence, fluorescence   excitation, and hole-burning (HB) spectroscopies. Analysis of the   absorption spectra of PSI, CP43', and PSI-CP43' complexes   suggests that there are 13 chlorophylls (Chls) per CP43' monomer,   i.e., a number that was observed in the CP43 complex of   Photosystem II (PSII) (Umena, Y. et al. Nature 2011, 473, 5560).   This is in contrast with the recent modeling studies of Zhang et   al. (Biochim. Biophys. Acta 2010, 1797, 457465), which suggested   that IsiA likely contains 15 Chls. Modeling studies of various   optical spectra of the CP43' ring using the uncorrelated EET   model (Zazubovich, V.; Jankowiak, R. J. Lumin. 2007, 127, 245250)   suggest that CP43' monomers (in analogy to the CP43 complexes of   the PSII core) also possess two quasi-degenerate low-energy   states, A' and B'. The site distribution functions of states A'   and B' maxima/full width at half-maximum (fwhm) are at 684 nm/180   cm-1 and 683 nm/80 cm-1, respectively. Our analysis shows that   pigments mostly contributing to the lowest-energy A' and B'   states must be located on the side of the CP43' complex facing   the PSI core, a finding that contradicts the model of Zhang et   al. but is in agreement with the model suggested by Nield et al.   (Biochemistry 2003, 42, 31803188). We demonstrate that the A'-A'   and B'-B' EET between different monomers is possible, though with   a slower rate than intramonomer A'-B' and/or B'-A' energy   transfer.

  Address (URL): http://pubs.acs.org/doi/abs/10.1021/jp206054b?prevSearch=%255BContrib%253A%2Bxim ao%2Bfeng%255D&searchHistoryKey=

 

Attachments

    Outcomes