Kamaraj Sathish kumar - Electrical Stress-directed Evolution of Biocatalysts Community Sampled from A Sodic-saline Soil for Microbial Fuel Cells

Document created by Kamaraj Sathish kumar on Aug 22, 2014
Version 1Show Document
  • View in full screen mode

  Publication Details (including relevant citation   information):

Received: December 07, 2011, Accepted: January 31, 2012, Available online: April 02, 2012



Abstract: Anode-respiring bacteria (ARB) perform an unusual form of respiration in which their electron acceptor is a solid anode. The focus of this study was to characterize the electrical stress direct evolution of biocatalysts as a way of enriching the community with ARB for microbial fuel cell. The original microbial consortium was sampled from a sodic-saline bottom soil (Texcoco Lake). Interestingly, iron (III) reducing bacteria consortium in the sodic-saline bottom soil was 8500 ± 15 MPN/100 mL by the most probable number method, since microbial reduction of iron (III) is reported to be associated to anode-respiring capabilities. Cyclic voltammetry studies of electrochemical stressed biofilm-ARB were conducted at 28th and 135th days, and an irreversible electron transfer reaction was found possibly related to electron transfer reaction of the cytochrome. The electrochemical impedance spectroscopy results revealed that the resistance of the biofilm-ARB decreased with time (28th day-11.11Ω and 135th day- 5.5Ω), possibly associated to the adaptability of electroactive biofilm on the graphite electrode surface. Confocal microscopy showed that the biofilms are active in nature and the biofilm-ARB attained ~40 μm thickness at the 136th day. Electrical stressed-ARB gave a maximum power density of 79.4mW/m2, and unstressed-ARB gave a maximum power density of 41.0mW/m2 in a single-chamber microbial fuel cell (SCMFC). All these electrochemical experiments and evaluation sug-gest that the electrical-stress directed evolution of ARB community was associated to a more efficient extracellular electron transfer proc-ess in SCMFC.


  Address (URL): http://www.groupes.polymtl.ca/jnmes/modules/journal/index.php/content0748.html