Zhanar Akhmetkarimova - HYDROGENATION OF MODEL OBJECTS AND THE COAL TAR

Document created by Zhanar Akhmetkarimova on Aug 22, 2014
Version 1Show Document
  • View in full screen mode

  Publication Details (including relevant citation   information):

  Oil   and gas processing and coal-processing industries are one of the   main components of the fuel and energy complex of any country.   One of the perspective and priority way in petrochemical and   power industry is the study of chemical raw materials and fuel   using was obtained as by-products from treatment   processes1. In the fuel-processing industry   hydrogenation of solid and heavy hydrocarbons is a versatile   alternative method of producing synthetic liquid   fuel2. The use of catalysts in the process of   destructive hydrogenation of heavy hydrocarbon material, process   allows for a more mild conditions, increase the conversion of   organic matter, yield and quality distillable products. The   authors of the study were made an attempt to explore influence   nanocatalysts on model objects (anthracene, phenanthrene) and on   the fraction of primary coal tar during hydrogenation. The search   for new catalysts and the development of effective technologies   for recycling the solid hydrocarbons and petroleum residues are   one of the main directions in the development of energy and   petrochemical industries. Consequently, much attention is paid to   the development of scientific approaches in creating a new   generation of catalytic systems with enhanced activity and   selectivity.

     
  1. Studied the effect of nanocatalyst during hydrogenation   product yield model objects and fractions of primary coal tar   resort 1750С. Nanocatalyst was prepared by the method   described in reference3. The samples were exposed to   model objects in the hydrogenation reactor pressure (autoclave)   of 0.2 liters. Pre-mixed mixture of anthracene with nanocatalysts   b-FeOOH was placed in   an autoclave. The reaction mixture was heated to 4200C   for 2 hours in an excess of hydrogen at a pressure 3MPa. The   resulting product was washed with benzene. Phenanthrene   hydrogenation samples is similar. Conditions for the   hydrogenation of model objects are given in Table 1.  

  Table  1

     
  1.     Conditions     of the hydrogenation of model objects and the fraction of     primary coal tar in the presence of     nanocatalysts b-FeOOH 
                                                                                                                                                                                                                                                                                                                                                                 
       

                    Sample       

     
       

                    Experience           №       

     
       

                    Catalyst,                    g       

     
       

                  Т,ºС       

     
       

                  Р, МPа       

     
       

                    τ,min       

     
       

                    1       

     
       

                    2       

     
       

                    3       

     
       

                    0,1%       

     
       

                    0,5%       

     
       

                    1%       

     
       

                    Anthracene       

     
       

                    2           g       

     
       

                    2           g       

     
       

                    2           g       

     
       

                    0,02       

     
       

                    0,01       

     
       

                    0,02       

     
       

                    420       

     
       

                    3       

     
       

                    60       

     
       

                    Phenanthrene       

     
       

                    1           g       

     
       

                    1           g       

     
       

                    1           g       

     
       

                    0,001       

     
       

                    0,005       

     
       

                    0,01       

     
       

                    420       

     
       

                    3       

     
       

                    60       

     
       

                    Fraction of primary coal tar       

     
       

                    20           g       

     
       

                    20           g       

     
       

                    20           g       

     
       

                    0,02       

     
       

                    0,1       

     
       

                    0,2       

     
       

                    420       

     
       

                    3       

     
       

                    180       

     

 

Investigation of the fractional composition of the hydrocarbon part of model objects adsorption method using high-performance chromatograph Agilent Technologies 5975. Identification revealed mixed hydrocarbon content, the name of which are shown below.

  Table   2

Product yield hydrogenation process model objects (numbers correspond to the number of experience in Table 1) %

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
       

                    Name       

     
       

                    Structure       

     
       

                    The yield of products,%       

     
       

                    1       

     
       

                    2       

     
       

                    3       

     
       

                    Cyclohexcylenzene       

     
       

 

     
       

                    fractionally       

     
       

                    3,86       

     
       

                    7       

     
       

                    2-           buthylnaphthalene       

     
       

 

     
       

                    fractionally       

     
       

                    –       

     
       

                    2,9       

     
       

                    2-ethyl-1, 1-biphenyl       

     
       

 

     
       

                    6,4       

     
       

                    7,90       

     
       

                    20       

     
       

                    9,10-dihydroanthracene       

     
       

 

     
       

                    29,1       

     
       

                    21,65       

     
       

                    20       

     
       

                    1,2,3,4-tetrahydroanthracene       

     
       

 

     
       

                    35,7       

     
       

                    29,35       

     
       

                    28       

     
       

                    Naphthalene       

     
       

 

     
       

                    -       

     
       

                    fractionally       

     
       

                    14,57       

     
       

                    Fluorene       

     
       

 

     
       

                    -       

     
       

                    fractionally       

     
       

                    35,15       

     
       

                    9,10-dihydro phenanthrene       

     
       

 

     
       

                    fractionally       

     
       

                    21,67       

     
       

                    26,98       

     
       

                    Anthracene       

       

 

     
       

 

     
       

                    28,7       

     
       

                    37,24       

     
       

                    21       

     
       

                    Phenanthrene       

       

 

     
       

 

     
       

                    Fractionally       

     
       

                    18,85       

     
       

                    23,30       

     

 

It should be noted that in the process of hydrogenation of anthracene hydrogenation product yield was the highest and 65%, and the yield degradation products 6.4% by adding 1% of the catalyst, unreacted material is 23.30%. In the case of hydrogenation of phenanthrene hydrogenation product yield was 48.29%, and the yield degradation products 14.57%, the addition of 1% of the catalyst, unreacted material is 23.30%. Comparison of the results of hydrogenation showed a significant change in the ratio of products of hydrogenation and hydrogenolysis, and the exponent of conversion depending on the ratio of the catalyst. Apparently, this is associated with an increased amount of oxygen in the form of higher concentration of hydroxyl groups, which indicates hydrogen bonding. The number of fragments containing a quaternary carbon atom has decreased dramatically after the hydrogenation, and the number of fragments (> C =) on the contrary increased, i.e. transition can be seen from the more to the less substituted compounds substituted. This is consistent with published data showing that from hydrocarbons with three or more rings collinear connection hydrogenated faster than angulyarnye4.

  In   the works 5-7 authors were investigated for obtaining   crude benzene hydrogenation of coal tar. Hydrogenation of the   primary processing of coal tar to produce motor fuels and   valuable organic substances not previously performed.   Consequently, there is a need of primary processing of coal tar,   in particular, their factions, the process of   hydrogenation.

     
  1.     After     studying the effect of nanocatalyst b-FeOOH     on model objects was conducted primary hydrogenation fraction     of coal tar in the same conditions. The resulting fraction of     primary products of coal tar dispersed at     3000C. Conditions for the     hydrogenation of the primary fraction of coal tar in the     presence of nanocatalysts b-FeOOH     are shown in Table 1. 

  Investigation   of the fractional composition of the fraction of primary coal tar   carried out a similar model objects, the results of which are   presented in Table 3.

  Table   3

Individual composition of the fractions of coal tar in the interaction nanocatalysts

β-FeOOH

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
       

                    The individual composition       

     
       

                  Contents       

     
       

                    0,1 %           catalyst       

     
       

                    0,5 %           catalyst       

     
       

                    1 %           catalyst       

     
       

                    Phenol       

     
       

                    -       

     
       

                    7,07       

     
       

                    4,091       

     
       

                    4-methylphenol       

     
       

                    1,546       

     
       

                    6,179       

     
       

                    2,777       

     
       

                    2-ethylphenol       

     
       

                    -       

     
       

                    1,026       

     
       

                    0,950       

     
       

                    2,4-dimethylphenol       

     
       

                    2,243       

     
       

                    4,034       

     
       

                    -       

     
       

                    3,4-dimethylphenol       

     
       

                    -       

     
       

                    5,891       

     
       

                    3,443       

     
       

                    Naphthalene       

     
       

                    -       

     
       

                    0,784       

     
       

                    1,236       

     
       

                    2-ethyl-5-methylphenol       

     
       

                    -       

     
       

                    -       

     
       

                    1,5       

     
       

                    1-methylnaphthalene       

     
       

                    0,331       

     
       

                    4,173       

     
       

                    -       

     
       

                    2-methylnaphthalene       

     
       

                    -       

     
       

                    0,730       

     
       

                    1,249       

     
       

                    Tridecane       

     
       

                    0,438       

     
       

                    0,830       

     
       

                    -       

     
       

                    Tetradecane       

     
       

                    5,758       

     
       

                    9,498       

     
       

                    -       

     
       

                    Pentadecane       

     
       

                    4,221       

     
       

                    8,414       

     
       

                    -       

     
       

                    Hexadecane       

     
       

                    2,323       

     
       

                    6,864       

     
       

                    -       

     
       

                    2,6-dimethylnaphthalene       

     
       

                    4,003       

     
       

                    4,814       

     
       

                    -       

     
       

                    1,4-dimethylnaphthalene       

     
       

                    7,443       

     
       

                    13,93       

     
       

                    -       

     
       

                    2,3-dimethylnaphthalene       

     
       

                    0,988       

     
       

                    2,645       

     
       

                    -       

     
       

                    1,4,6-trimetilnaftalin       

     
       

                    0,221       

     
       

                    1,993       

     
       

                    -       

     
       

                    1,6,7-trimetilnaftalin       

     
       

                    3,585       

     
       

                    6,855       

     
       

                    -       

     
       

                    Heptadecan       

     
       

                    1,113       

     
       

                    3,685       

     
       

                    -       

     

 

  From   the experimental studies of hydrogenation of coal tar fractions   primary found that the structure of the original fraction   contains groups ROR, the hydrolysis of which is likely to occur   with the formation of phenols8, 9.

Content in the reaction products of hydrocarbons and oxygen-containing compounds, as well as redistribution of the group were a faction of the primary coal tar hydrogenation with transformations suggests that degradation occurs with the removal of hydroxyl groups on the alkyl substituents containing a carbon-heteroatom10. In the process of catalytic decomposition of coal tar fractions primary phenol content than the original fraction (3.83%) increased to 7.07% by adding 0.5% nanocatalysts. From the point of view of the mechanism of the reaction occurs, there is a heterolytic decomposition precursor molecules directly in the presence of nanocatalysts by carbonium-ion mechanism with preferential formation of hydrocarbons with a tertiary atom carbohydrate (branched structures). Organic matter, to engage with the reaction centers, deactivate them, i.e. if the number of catalytic hydrogenation product yield decreases and the yield of the products of degradation increases. Comparing the results of liquid products obtained by hydrogenation of the resin in the presence ofβ-FeOOH   nanocatalysts in different ratios in hydrogen, we can conclude   that the degree of conversion of the resin in the first and the   third case is lower than in the second, because during   hydrogenation in the presence of nanocatalysts 0.5% yield of   phenol and its derivatives above (24.194%) than with the 0.1% and   1% (3.789% and 12.761%) catalyst.

Selectivity of the catalyst with respect to formation of liquid hydrocarbons increased markedly, reaching 24.194% yield of phenol and its derivatives by adding 0.5%, naphthalene and its derivatives is 37.996% and 32.751% paraffin.

Thus, the estimation of the influence of the catalytic additiveβ-FeOOH   on the hydrogenation of model objects and the fraction of primary   coal tar resort 1750C. Found that the addition of a   smaller amount of catalyst hydrogenation product yield decreases   and the yield of the products of degradation increases. The   results of the experiments, we can conclude that the nanosized   catalyst is a newly developed catalytic additive for promoting   greater chemical modification and degradation of organic matter   hydrocarbon fraction of primary coal tar, resulting in a   significantly higher yield of light products. Consequently, the   search and application nanocatalytic additives during processing   improves the efficiency known in the field of technology.

 

References and Notes

(1) Wei X.Y.; Ogata E.; Zong Z.M.; Zhou S.L.; Liu J.Z. Advances in the study on hydrogen transfer to model compounds for coal liquefaction. 2000,103.

(2) Kalechits I.V.; Lipovich V.G. Chemistry and processing of coal; Chemistry: Moscow, 2008; p 324.

(3) Jong N.P.; Kwang J.A.; Yosun H.; Je-Geun P.; Nan-Jin N.; Jae-Young K. J. Nature materials. 2004, 3. 891-895.

(4) Kalechits I.V. Modeling of coal liquefaction; IVTAN: Moscow, 1999, p 229.

(5) Patent RK № 6900, Karasev N.I.; Kuchin V.N. Okrut II 1995,Hydrodynamic heater.

(6) Gudun K.A.; Baikenov M.I.; Tusiphan A.; Feng-yung Ma.International Conference of Physics, Chemistry and chemistry technology; Nauka i studia: Przemyśl, 2012, 87-91.

(7) Baikenov M.I.; Amerkhanova S.K.; Wali A. The conclusion of the extradition of innovative patent №022739, 08.09.2011g. MJ RK.

(8) Gudun K.A.; Baikenov M.I.; Feng-yung Ma. J. Solid Fuel Chemistry. 2010.44, № 6. 419-422.

(9) Hadzhiev S.N.; Lyadov A.S.; Krylov M.V.; Krylov A. J. Petrochemicals. 2011. 51, № 2. 84-95.

(10) Kamerky A.R.; Nichols D.A.; Siskm M. J. Chem Rev.   2001. №4. 837-892.

 

  Abstract:

  Address (URL): http://zhanarnf@mail.ru

 

Attachments

    Outcomes