Andriy Kovalenko - Publications

Version 3

      Publication Details (including relevant citation   information):

      Publications

       

      Journal Articles

       

      1. Holovko, M.; Kovalenko, A.; Hirata, F.(2016). Partial molar   volume of nonionic surfactants inaqueous solution studied by   the KB/3D-RISM-KH theory. J. Molec. Liq.217: 103-111.

       

      2. Rodrigo.L.Silveira, Stanislav R. Stoyanov, Andriy Kovalenko,   Munir Skaf. (2016). Cellulose Aggregation under Hydrothermal   Pretreatment Conditions. Biomacromolecules. 17(8): 2582-2590.

       

      3. J. Johnson, D. A. Case, T. Yamazaki, S. Gusarov, A. Kovalenko,   T. Luchko. (2016). Small molecule hydration energy and   entropy from 3D-RISM. J. Phys. Condens. Matter. 28(34): 344002.

       

      4. T. Luchko, N. Blinov, G.C. Limon, K.P. Joyce, A.Kovalenko.   (2016). SAMPL5: 3D-RISM partition coefficient calculations   with partial molar volume corrections and solute conformational   sampling. J. Comput. Aided Mol. Des.: 1-13.

       

      5. Stepan Hlushak, Stanislav R. Stoyanov, and Andriy Kovalenko.   (2016). A 3D-RISM-KH Molecular Theory of Solvation Study of   the Effective Stacking Interactions of Kaolinite Nanoparticles in   Aqueous Electrolyte Solution Containing Additives. J. Phys.   Chem. C. 120, pp 21344–2(38): 21344–21357.

       

      6. A,E.Kobryn, S. Gusarov, A. Kovalenko. (2016). A closure   relation to molecular theory of solvation   for macromolecules. J Phys Condens Matter. 28(40): 404003.

       

      7. Kondratenko, M. ; Stoyanov, S. R.; Gusarov, S.; Kovalenko, A.;   McCreery, R. L.(2015). Theoretical Modeling of Tunneling   Barriers in Carbon-Based Molecular Electronic Junctions. J. Phys.   Chem. C. 119: 11286–11295.

       

      8. I. Omelyan and A. Kovalenko. (2015). MTS-MD of biomolecules   steered with 3D-RISM-KH mean solvation forces accelerated   with generalized solvation force extrapolation. J. Chem. Theory   Comput.11: 1875–1895.

       

      9. W.-J. Huang, N. Blinov, D. S. Wishart, and A. Kovalenko.   (2015). Role of Water in Ligand Binding to Maltose-Binding   Protein: Insight from a New Docking Protocol Based on   the3D-RISM-KH Molecular Theory of Solvation. J. Chem. Inf.   Model.55: 317-328.

       

      10. R. L. Silveira, S. R. Stoyanov, S. Gusarov, M. S. Skaf, and   A. Kovalenko. (2015). Supramolecular Interactions in   Secondary PlantCell Walls: Effect of Lignin Chemical Composition   Revealed with the MolecularTheory of Solvation. J. Phys.   Chem. Lett.6: 206-211.

       

      11. Kovalenko, A.(2015). Molecular theory of solvation:   Methodology summaryand illustrations. Condens. Matter   Phys.18: 32601: 1–24.

       

      12. Lyubimova, O.; Stoyanov, S. R.; Gusarov, S.; Kovalenko,   A.(2015). Electric Interfacial Layer of   Modified CelluloseNanocrystals in Aqueous Electrolyte   Solution: Predictions by the MolecularTheory of   Solvation. Langmuir. 31: 7106−7116.

       

      13. M. R. Lage,* S. R. Stoyanov, J. W. M. Carneiro, T. Dabros,   and A. Kovalenko. (2015). Adsorption of Bitumen Model   Compounds on Kaolinite in Liquid and Supercritical Carbon Dioxide   Solvents: A Study by Periodic Density Functional Theory and   Molecular Theory of Solvation. Energy & Fuels. 29: 2853-2863.

       

      14. W.J. Huang, N. Blinov, and A. Kovalenko. (2015).   Octanol–Water Partition Coefficient from   3D-RISM-KH Molecular Theory of Solvation with Partial Molar   Volume Correction. J. Phys. Chem. B. 119: 5588–5597.

       

      15. A. Kobryn, D. Nikolíc, O. Lyubimova, S. Gusarov, and A.   Kovalenko. (2014). DPD with an Effective Pair Potential   fromIntegral Equation Theory of Molecular Liquids. J. Phys. Chem.   B. 118: 12034-12049.

       

      16. S. R. Stoyanov, O. Lyubimova, S. Gusarov, and A. Kovalenko.   (2014). Computational Modeling of the Structure Relaxation   and Dispersion Thermodynamics of Pristine and Modified Cellulose   Nanocrystals in Solution, (invited paper). Nordic Pulp Paper   Res. J.29: 144-155.

       

      17. L. M. da Costa, S. R. Stoyanov, S. Gusarov, P. R. Seidl, J.   W. de M. Carneiro, and A. Kovalenko. (2014). Computational   Study of the Effect of Dispersion Interactions on the   Thermochemistry of Aggregation of Fused Polycyclic Aromatic   Hydrocarbons as Model Asphaltene Compounds in Solution. J. Phys.   Chem. A. 118: 896-908.

       

      18. W.-J. Huang, G. K. Dedzo, S. R. Stoyanov, O. Lyubimova, S.   Gusarov, S. Singh, H. Lao, A. Kovalenko, and C. Detellier.   (2014). Molecule-SurfaceRecognition between Heterocyclic Aromatic   Compounds and Kaolinite in TolueneInvestigated by Molecular   Theory of Solvation and Thermodynamic and Kinetic   Experiments. J. Phys. Chem. C. 118: 23821-23834.

       

      19. A. Kovalenko. (2013). Multiscale modeling of solvation in   chemical and biological nanosystems and in nanoporous   materials, (invited paper). Pure Applied Chem.85: 159-199.

       

      20. J. Fafard, O. Lyubimova, S. Stoyanov, G. Kenne Dedzo, S.   Gusarov, A. Kovalenko, and C. Detellier. (2013). Adsorption   of Indole on Kaolinite in Non-aqueous Media: Organoclay   Preparation and Characterization, and 3D-RISM-KH Molecular   Theory of Solvation Investigation. J. Phys. Chem. C.   117: 18556-18566.

       

      21. R. P. N. Veregin, M. S. Hawkins, Q. Li, S. Gusarov, and A.   Kovalenko. (2013). Linking the Chemistry and Physics of   Electronic Charge Transfer in Insulators: Theory and Experiment.   J. Imaging Sci. Technol.57: 030401-12.

       

      22. R. L. Silveira,* S. R. Stoyanov, S. Gusarov, M. S. Skaf, and   A. Kovalenko. (2013). Plant Biomass Recalcitrance: Effect of   Hemicellulose Composition on Nanoscale Forces that Control Cell   Wall Strength. J. Am. Chem. Soc. Communication. 135:   19048–19051.

       

      23. S. Gusarov, Yu. Yu. Dmitriev, S. R. Stoyanov, and A.   Kovalenko. (2013). Koopmans' MCSCF Fukui Functions and MCSCF   Perturbation Theory, (invited paper). Can. J. Chem.91(9):   886-893.

       

      24. S. R. Stoyanov, C.-X. Yin, M. R. Gray, J. M. Stryker, S.   Gusarov, and A. Kovalenko. (2013). Density Functional Theory   Investigation of the Effect of Axial Coordination and Annelation   on the Absorption Spectroscopy of Nickel(II) and Vanadyl   Porphyrins Relevant to Bitumen and Crude Oils, (invited   paper). Can. J. Chem.91(9): 872-878.

       

      25. N. S. Pagadala, T. C. Bjorndahl, N. Blinov, A. Kovalenko, and   D. S. Wishart. (2013). Molecular docking of thiamine reveals   similarity in binding properties between the prion protein and   other thiamine binding proteins. J. Molec. Modeling, DOI   10.1007/s00894-013-1979-5. : 1-11.

       

      26. D. Nikolic, K. A. Moffat, V. M. Farrugia, A. E. Kobryn, S.   Gusarov, J. H. Wosnick, and A. Kovalenko.   (2013). Multi-Scale Modeling and Synthesis of Polyester   Ionomers. Phys. Chem. Chem. Phys.15: 6128-6138.

       

      27. I. P. Omelyan and A. Kovalenko. (2013). Multiple time step   molecular dynamics in the optimized isokinetic ensemble   steered with the molecular theory of solvation: Accelerating with   advanced extrapolation of effective solvation forces. J.   Chem. Phys.139: 244106-23.

       

      28. A. Kovalenko, A. E. Kobryn, S. Gusarov, O. Lyubimova, X. Liu,   N. Blinov, and M. Yoshida. (2012). Molecular Theory of   Solvation for Supramolecules and Soft Matter Structures:   Application to Ligand Binding, Ion Channels. Soft Matter. 8:   1508-1520.

       

      29. I. P. Omelyan and A. Kovalenko. (2012). Interpretation of   atomic motion in flexible molecules: Accelerating molecular   dynamics simulations. Phys. Rev. E. 85: 026706-16.

       

      30. J. D. Krabbe,* V. Leontyev,* M. T. Taschuk, A. Kovalenko, and   M. J. Brett. (2012). Square spiral photonic crystal with   visible band gap. J. Appl. Phys.111: 064314-6.

       

      31. L. M. da Costa,* S. R. Stoyanov, S. Gusarov, X. Tan, M. R.   Gray, J. M. Stryker, R. Tykwinski, J. W. de M. Carneiro, P.   R. Seidl, and A. Kovalenko. (2012). Density Functional Theory   Investigation of the Contributions of π−π Stacking and   Hydrogen-Bonding Interactions to the Aggregation of Model   Asphaltene Compounds. Energy & Fuels. 26: 2727-2735.

       

      32. I. P. Omelyan and A. Kovalenko. (2012). Generalized   canonical-isokinetic ensemble: Speeding up multiscale   molecular dynamics and coupling with 3D molecular theory of   solvation, (invited paper). Molec. Simul.39: 25-48.

       

      33. S. Gusarov, B. S. Pujari, and A. Kovalenko. (2012). Efficient   treatment of solvation shells in 3D molecular theory of   solvation. J. Comput. Chem.33: 1478-1494.

       

      34. L. M. da Costa,* S. Hayaki,* S. R. Stoyanov, S. Gusarov, X.   Tan, M. R. Gray, J. M. Stryker, R. Tykwinski, J. W. de M.   Carneiro, H. Sato, P. R. Seidl, and A. Kovalenko. (2012).   3D-RISM-KH Molecular Theory of Solvation and Density   Functional Theory Investigation of the Role of Water in the   Aggregation of Model Asphaltenes. Phys. Chem. Chem. Phys.14:   3922-3934.

       

      35. D. Nikolic, N. Blinov, D. Wishart, and A. Kovalenko. (2012).   3D-RISM-DOCK: A New Fragment-Based Drug Design Protocol, J.   Chem. Theory Comput.J. Chem. Theory Comput.8: 3356-3372.

       

      36. L. Laurentius, S. R. Stoyanov, S. Gusarov, A. Kovalenko, R.   Du, G. Lopinski, and M. T. McDermott. (2011). Diazonium   derived aryl films on gold nanoparticles: Evidence for a   carbon-gold covalent bond. ACS Nano. 5: 4219-4227.

       

      37. T. Imai, N. Miyashita, Y. Sugita, A. Kovalenko, F. Hirata,   and A. Kidera. (2011). Functionality Mapping on Internal   Surfaces of Multidrug Transporter AcrB Based on Molecular Theory   of Solvation: Implications for Drug Efflux Pathway, (Journal   Cover). J. Phys. Chem. B; Journal Cover.115: 8288-8295.

       

      38. M. C. Stumpe, N. Blinov, D. Wishart, A.Kovalenko, V. S.   Pande. (2011). Calculation of Local Water Densities in   Biological Systems - A Comparison of Molecular Dynamics   Simulations and the 3D-RISM-KH Molecular Theory of   Solvation, (Journal Cover). J. Phys. Chem. B; Journal Cover.115:   319-328.

       

      39. T. Yamazaki and A. Kovalenko. (2011). Spatial Decomposition   of Solvation Free Energy Based on the 3D Integral Equation   Theory of Molecular Liquid: Application to Miniproteins. J. Phys.   Chem. B. 115: 310-318.

       

      40. A. E. Kobryn and A. Kovalenko. (2011). Slip boundary   conditions in nanofluidics from the molecular theory of   solvation, (invited paper). Molec. Simul.37: 733-737.

       

      41. B. S. Pujari, S. Gusarov, M. Brett, and A. Kovalenko. (2011).   Single-side-hydrogenated graphene: Density functional theory   predictions. Phys. Rev. B Rapid Communications. 84: 041402(R)-4.

       

      42. I. P. Omelyan and A. Kovalenko. (2011). Overcoming the   barrier on time step size in molecular dynamics simulation   of molecular liquids. J. Chem. Theory Comput.8: 6-16.

       

      43. I. P. Omelyan and A. Kovalenko. (2011). Multiple time scale   molecular dynamics for fluids with orientational degrees of   freedom. II. Canonical and isokinetic ensembles. J. Chem. Phys.;   Highlighted in Virtual J. Biol. Phys. Res., 23(1), Jan 2012,   APS; Highlighted in Virtual J. Ultrafast Sci., 10(10), Oct 2011,   AIP and APS.135: 234107-12.

       

      44. I. P. Omelyan and A. Kovalenko. (2011). Multiple time scale   molecular dynamics for fluids with orientational degrees of   freedom. I. Microcanonical ensemble. J. Chem. Phys.; Highlighted   in Virtual J. Ultrafast Sci., 10(10), Oct 2011, AIP and APS.135:   11410-9.

       

      45. A. Kovalenko and N. Blinov. (2011). Multiscale methods for   nanochemistry and biophysics in solution, (invited paper).   J. Molec. Liq,. 164: 101-112.

       

      46. N. Blinov, L. Dorosh, D. Wishart, and A. Kovalenko. (2011).   3D-RISM-KH approach for biomolecular modeling at nanoscale:   Thermodynamics of fibril formation and beyond, (invited paper).   Molec. Simul.37: 718-728.

       

      47. S. R. Stoyanov, C.-X. Yin, M. R. Gray, J. Stryker, S.   Gusarov, and A. Kovalenko. (2010). Computational and   Experimental Study of the Structure, Binding Preferences, and   Spectroscopy of Nickel(II) and Vanadyl Porphyrins in   Petroleum. J. Phys. Chem. B. 114: 2180-2188.

       

      48. J. Kaminski,* S. Gusarov, T. Wesolowski, and A. Kovalenko.   (2010). Modeling Solvatochromic Shifts Using the   Orbital-Free Embedding Potential at Statistically Mechanically   Averaged Solvent Density. J. Phys. Chem. A. 114: 6082-6096.

       

      49. T. Luchko,* S. Gusarov, D. R. Roe, C. Simmerling, D. A. Case,   J. Tuszynski, and A. Kovalenko. (2010). Three-dimensional   molecular theory of solvation coupled with molecular dynamics in   Amber. J. Chem. Theory Comput.6: 607-624.

       

      50. K. P. Santo, A. Kovalenko, and M. Stepanova. (2010).   Self-Consistent Field Modeling of 3D Morphologies of   Branched Lipid Surfactant at Air-Water Interface. Macromol.   Theory Simul.19: 228-239.

       

      51. N. Blinov, L. Dorosh, D. Wishart, and A. Kovalenko. (2010).   Association thermodynamics and conformational stability of   β-sheet Amyloid β(17-42) oligomers: effects of E22Q (Dutch)   mutation and charge neutralization. Biophys. J.98: 282-296.

       

      52. G. Borzsonyi, R. L. Beingessner, T. Yamazaki, J.-Y. Cho, A.   J. Myles, M. Malac, R. Egerton, M. Kawasaki, K. Ishizuka, A.   Kovalenko, and H. Fenniri. (2010). Water-Soluble J-Type Rosette   Nanotubes with Giant Molar Ellipticity. J. Am. Chem. Soc.   Communication. 132: 15136-15139.

       

      53. G. Borzsonyi, R. S. Johnson, J.-Y. Cho, T. Yamazaki, R. L.   Beingessner, A. Kovalenko, and H. Fenniri. (2010). Rosette   Nanotubes with 1.4 nm Inner Diameter from a Tricyclic Variant of   the LehnMascal GC Base. ChemComm.46: 6527-6529.

       

      54. T. Yamazaki, A. Kovalenko, V. V. Murashov, and G. N. Patey.   (2010). Ion solvation in a water-urea mixture. J. Chem.   Phys. B. 114: 613-619.

       

      55. A. Bergren, R. L. McCreery, S. R. Stoyanov, S. Gusarov, and   A. Kovalenko. (2010). Electronic Characteristics and Charge   Transport Mechanisms for Large Area Aromatic Molecular Junctions.   J. Phys. Chem. C. 114: 15806-15815.

       

      56. T. Yamazaki, H. Fenniri, and A. Kovalenko. (2010). Structural   Water Drives Self-assembly of Organic Rosette Nanotubes and   Holds Host Atoms in the Channel. ChemPhysChem.11: 361-367.

       

      57. S. Genheden, T. Luchko,* S. Gusarov, A. Kovalenko, and U.   Ryde. (2010). An MM/3D-RISM Approach for Ligand-Binding   Affinities. J. Phys. Chem. B. 114: 8505-8516.

       

      58. R. Chhabra, J. Moralez, J. Raez, T. Yamazaki, J.-Y. Cho, A.   Myles, A. Kovalenko, and H. Fenniri. (2010). One-Pot   Nucleation, Growth, Morphogenesis, and Passivation of 1.4 nm Au   Nanoparticles on Self-Assembled Rosette Nanotubes. J. Am. Chem.   Soc. Communication. 132: 32-33.

       

      Book Chapters

       

      1. Andriy Kovalenko. (2015). Partial Molar Volumes of Proteins in   Solution. 2. Prediction by Statistical-Mechanical, 3D-RISM-KB   Molecular Theory of Solvation, (invited chapter). Emmerich   Wilhelm and Trevor Letcher. Volume Properties: Liquids,   Solutions and Vapours. Royal Society of Chemistry Press, IUPAC,   575-610. 

       

      2. A. Kovalenko. (2016). Multiscale modeling of solvation. C.   Breitkopf and K. Swider. Springer Handbook   of Electrochemistry. Springer.

       

      3. S. R. Stoyanov, S. Gusarov and A. Kovalenko. (2011).   Multiscale Modeling of the Adsorption Interaction between   Bitumen Model Compounds and Zeolite Nanoparticles in Gas and   Liquid Phase, (invited). M. Meunier. Industrial Applications   of Molecular Simulations. Taylor and Francis, 203-230. 

       

      4. T. Imai, N. Yoshida, A. Kovalenko, and F. Hirata. (2010). A   Statistical Mechanics Theory of Molecular Recognition. K.   Kuwajima, Y. Goto, F. Hirata, M. Terazima, M. Kataoka. Water and   Biomolecules - Physical Chemistry of Life Phenomena.   Springer Science, 187-210.

       

      5. A. Kovalenko and F. Hirata. (2005). A molecular theory of   solutions at liquid interfaces. H. Watarai, N. Teramae, and   T. Sawada. Interfacial Nanochemistry: Molecular Science and   Engineering at Liquid-Liquid Interfaces. Springer, 97-125.

       

      6. A. Kovalenko. (2003). Three-dimensional RISM theory for   molecular liquids and solid-liquid interfaces. F. Hirata.   Molecular Theory of Solvation. Kluwer Academic Publishers,   169-275. 

       

      Conference Publications

       

      1. (2015). Molecular theory of solvation based miltiscale   modeling of biomolecular systems and functions. Conference   Abstracts. 2015 Canadian Association of Physicists Congress,   Edmonton, Canada, 2015/6.

       

      2. (2015). Structural Solvent in Protein Functions, Octanol-Water   Partition Coefficients, and Protein Folding: Prediction with   3D-RISM-KH Molecular Theory of Solvation. Conference Abstracts.   North American UGM & Conference 2015, Montreal,   Canada, 2015/6

       

      3. (2015). MD of biomolecules steered with mean solvation forces   obtained from 3D-RISM-KH molecular theory of solvation.   Computational Trends in Solvation and Transport in Liquids.   Lecture Notes, eds. G. Sutmann et al. Forschungszentrum   Juelich Series of Schools in Computational Science:   Computational Trends in Solvation and Transport in Liquids,   supported by CECAM (Centre Europeen de Calcul Atomique et   Moleculaire) and RESOLV, Juelich, Germany (383-418), 2015/3

       

      4. (2014). Multiscale Theory, Modeling, and SimulationBased on   Statistical Mechanics: Protein Structure, Molecular   Recognition, andTranslocation of Antiprion Therapeutic Agents.   Conference Abstracts. International Conference and Workshop   on Molecular Origins of Protein Misfolding and   Neurodegenerative Disease, Vancouver, Canada, 2015/6

       

      5. (2014). Statistical Mechanics Based, Multiscale Modelingof   Effective Interactions in Solution and Soft Matter Systems   with Clay andCellulose Nanoparticles. Conference Abstracts.   Brazil-Canada workshop on polymers for oil production, 2-4   December 2014, University City, Rio de Janeiro, Brazil, Rio de   Janeiro, Brazil, 2014/12

       

      6. (2013). Multiscale modeling of cell walls nanostructure for   overcoming biomass recalcitrance and of cellulose   nanocrystals for rational design of biomaterials (keynote).   Conference Abstracts. International Conference of the   European COST Action FP1105 on “Understanding wood cell wall   structure, biopolymer interaction and composition:   implications for current products and new material innovation”,   8-10 October 2013, Trabzon, Turkey.,

       

      7. (2013). Molecular theory of solvation and electrochemistry in   nanoporous electrodes. Conference Abstracts. 246th ACS   National Meeting, 8-12 September 2013, Indianapolis, IN,   USA, 2013/9

       

      8. (2013). Multiscale Modeling of Solvation and Effective   Interactions of Functionalized Cellulose Nanocrystals,   (invited paper). USDA Forest Prod. Lab, NIST, U of Maine, TAPPI   Press. 2013 TAPPI International Conference on Nanotechnology   for Renewable Materials, 24-27 June 2013, Stockholm, Sweden,   (147-150), 2013/7

       

      9. (2013). A Closer Look at the HPC Behind Multiscale Theory and   Modeling (invited). Conference Abstracts. WestGrid and   Compute Canada Seminar Series, 6 March 2013, 2013/3

       

      10. (2012). Molecular Theory of Solvation and Electrical Double   Layer in Nanoporous Carbon Electrodes. ECS Transactions -   Boston, MA, vol. 41, iss 22. 220th Electrochemical Society   Meeting, Symposium B5 – Electrochemical Capacitors:   Fundamentals to Applications, 9-14 October 2011, Boston MA,   USA, (133-149), 2012/10

       

      11. (2012). Statistical-mechanical, 3D molecular theory of   solvation predicts the role of water in soft matter and   biomolecular systems. Conference Abstracts. 244th ACS National   Meeting, 19-23 August 2012, Philadelphia, PA,   USA, 2012/8

       

      12. (2012). Statistical Mechanics Based Multiscale Theory of   Synthetic Organic and Biomolecular Nanosystems and   Nanomaterials. Conference Abstracts. 95th Canadian Chemistry   Conference and Exhibition, 26-30 May 2012, Calgary, AB,   Canada, 2012/5

       

      13. (2011). Density Functional Investigation Of Charge Transfer   In Organic Solar Cells. ECS Transactions - Boston, MA, Vol.   41, iss. 4. 220th Electrochemical Society Meeting, 9-14 October   2011, Boston MA, USA, (129-134), 2011/10

       

      14. (2011). Molecular theory of solvation and electrical double   layer in nanoporous carbon electrodes. Conference Abstracts.   220th Electrochemical Society Meeting, Symposium B5 –   Electrochemical Capacitors: Fundamentals to Applications,   9-14 October 2011, Boston MA, USA, 2011/10

       

      15. (2011). Multiscale theory and modeling of chemical and   biological nanosystems in solution, (keynote). Conference   Abstracts. 32nd International Conference on Solution Chemistry,   28 Aug – 02 Sept 2011, La Grande Motte, France, (35-40),   2011/8

       

      16. (2011). 3D-RISM-KH theory unveils function related properties   of biomolecular and synthetic organic nanosystems.   Conference Abstracts. International Symposium on Molecular   Science of Fluctuations toward Biological Functions, 28-29   March 2011, Okazaki, Japan., 2011/3

       

      17. (2010). Structural solvent in self-assembly and functions of   supramolecular nanoarchitectures and biomolecular systems.   Conference Abstracts. International Chemical Congress PACIFICHEM   2010, Symposium on New Experimental and Computational Probes   of Water in Biological Systems, 15-20 December 2010,   Honolulu, Hawaii, USA, 2010/12

       

      18. (2010). Theory, modeling, and simulation on multiple scales,   (keynote). Conference Abstracts. 2010 TAPPI International   Conference on Nano for the Forest Product Industry, 27-29   September 2010, Espoo, Finland., 2010/9

       

      19. (2010). Multiscale methods for nanochemistry and biophysics   in solution, (plenary). Conference Abstracts. European   Molecular Liquids Group (EMLG) and the Japanese Molecular Liquids   Group (JMLG) Annual Meeting 2010, Complex liquids: Modern   trends in exploration, understanding and application,   5-9 September 2010, Lviv, Ukraine., 2010/9

       

      20. (2010). 3D Molecular Theory of Solvation Coupled with MD for   Nanomedical Sciences. Proc. 2010 NSTI Nanotechnology   Conference and Expo, CRC Press, Vol.3. 2010 NSTI Nanotechnology   Conference and Expo, 21-24 June 2010, Anaheim, California,   USA, (440-443), 2010/6

       

      21. (2010). Slip Boundary Conditions in Nanofluidics from the   Molecular Theory of Solvation. Proc. 2010   NSTI Nanotechnology Conference and Expo, CRC Press, Vol.2.   Symposium on Micro & Nano Fluidics, 2010 NSTI   Nanotechnology Conference and Expo, 21-24 June 2010, Anaheim,   California, USA, (428-431), 2010/6

       

      22. (2010). 3D-RISM-KH approach for biomolecular modeling at   nanoscale: Thermodynamics of fibril formation and beyond.   Proc. 2010 NSTI Nanotechnology Conference and Expo, CRC Press,   Vol.3. 2010 NSTI Nanotechnology Conference and Expo, 21-24   June 2010, Anaheim, California, USA, (436-439), 2010/6

       

      23. (2010). 3D Molecular Theory of Solvation for Nanochemistry in   Solution, Symposium on Computational Methods.Proc. 2010 NSTI   Nanotechnology Conference and Expo, CRC Press, Vol.2. 2010   NSTI Nanotechnology Conference and Expo, 21-24 June 2010,   Anaheim, California, USA, (665-668), 2010/6

       

      24. (2010). Application of Computational Quantum Chemistry to   Nanotechnological Problems, Symposium on Computational   Methods. Proc. 2010 NSTI Nanotechnology Conference and Expo, CRC   Press, Vol.2. Symposium on Computational Methods, Simulation   & Software Tools, in: Technical Proc. 2010   NSTI Nanotechnology Conference and Expo, 21-24 June 2010,   Anaheim, California, USA, (657-660),  2010/6

       

      25. (2009). Multiscale Theories in Computational Chemistry: From   Super CI and DFT for Electronic Structure to 3D Molecular   Theory of Solvation and to Hydrodynamic Boundary Conditions.   Conference Abstracts. 7th Canadian Computational Chemistry   Conference (CCCC7), 20-24 July 2009, Halifax, NS,   Canada, 2010/7

       

      26. (2009). Association Thermodynamics and Solvation Effects in   Amyloid Fibrils and Β-Sheet Oligomers. Conference Abstracts.   PrP Canada 2009 Conference Satellite Event: New Discoveries &   Novel Approaches in Prion Structure & Dynamics, 4 March   2009, Edmonton, AB, Canada, 2010/3

       

      27. (2008). Nanoscience and Nanotechnology for Energy Storage,   (keynote). Conference Abstracts. NanoEnergy 2008 Conference,   21-23 October 2008, Paris, France., 2008/10

       

      28. (2008). Molecular Theory of Solvation: a Novel Tool for   Predictive Multiscale Modeling of Chemical and Biological   Systems in Solution. Conference Abstracts. 1st International   Conference of the Grand Challenge to Next-Generation   Integrated Nanoscience, 3-6 June 2008, Tokyo, Japan, 2008/6

       

      29. (2006). Molecular Theory of Solvation: A Novel Tool of   Computational Chemistry. Conference Abstracts. 6th Canadian   Computational Chemistry Conference, 26-30 July 2006, Vancouver,   British Columbia, Canada, (31-32), 2006/7

       

      Intellectual Property

      Patents

       

      1. Resin particles for toner for developing agent for image   formation. United States. US2015183899-A1. 2014/09/24

      Patent Status: Granted/Issued

      Veregin,R. P.; Li, Q.; Kovalenko, A.; Gusarov, S. Resin particles   for toner for developing agent for image formation. Patent #   US2015183899-A1.

      Comprises specific ester-based monomer(s) or itsisomers, and   has carbon/oxygen ratio of above preset value and size of   presetvalue.

       

      2. Carrier resins with improved relative humidity sensitivity.   United States. US2014302435-A1; JP2014203078-A;   US9069275-B2. 2013/04/03

      Patent Status: Granted/Issued

      Veregin, R. P.; Li, Q.; Kovalenko, A.; Gusarov, S.;Makeiff, D.;   Farrugia, V.; Hawkins, M. S. Carrier resins with improved   relative humidity sensitivity. Patent# US2014302435-A1;   JP2014203078-A; US9069275-B2. 

      Coating resin comprising monomer units, useful in magnetic   carrier of developer that is useful for forming image, where   monomer units comprise vinyl group and a carbonis optionally   substituted with methyl group. The disclosure generally   describes carrier resins, and in particular, resins used for   carrier coatings which include at least one ester functional   group and at least one cyclic aliphatic group containing at least   one nitrogen atom in the cyclic ring structure. Carriers   having such resins in the coating exhibit high charge   and excellent relative humidity (RH) sensitivity of charge   to changing environmental conditions.

       

      3. Carrier Resins With Improved RH Sensitivity. United States.   US2014370435-A1; JP2015000981-A. 2013/06/14

      Patent Status: Granted/Issued

      Year Issued: 2014

      Veregin,R. P.; Li, Q.; Kovalenko, A.; Gusarov, S.; Vanbesien, D.   W.; Hawkins, M. S. Carrier Resins With Improved RH   Sensitivity. Patent # US2014370435-A1;JP2015000981-A.

      Coating resin comprising monomer units, useful in magnetic   carrier of developer that is useful for forming image, where   monomer units comprise vinyl group and a carbonis optionally   substituted with methyl group. The instant   disclosure describes methacrylate coated carrier resins with   aromatic substituent groups with optionally carbon   atoms replaced by heteroatoms such as S, N, and O for charge   control and improved RH sensitivity.

       

      4. Negative Charge Carrier Resins With RH Sensitivity. United   States. US2014370429-A1; DE102014210143-A1; CA2852333-A1;   JP2015001743-A. 2013/06/14

      Patent Status: Granted/Issued

      Year Issued: 2014

      Veregin, R. P.; Li, Q.; Kovalenko, A.; Gusarov, S.; Vanbesien, D.   W.; Hawkins, M. S. Negative Charge Carrier Resins With RH   Sensitivity. Patent # US2014370429-A1; DE102014210143-A1;   CA2852333-A1; JP2015001743-A.

      Carrier composition used in developer, comprises polymer coating   resin containing methacrylate monomer with hydrophobic   substituent, and having highest occupied molecular orbital   and electron density more/less than molecular orbitals. The   instant disclosure describes methacrylate coated carrier   resins with hydrophobic substituents for charge control and   improved RH sensitivity. 

      5. Carrier Resins With Improved RH Sensitivity. United States.   US2014370432-A1; DE102014210144-A1; CA2852484-A1;   JP2015001744-A; CN104238293-A; BR102014014165-A2. 2013/06/14.

      Patent Status: Granted/Issued

      Year Issued: 2014

      Veregin, R. P. N.; Li, Q.; Kovalenko, A.;Gusarov, S.; Vanbesien,   D. W.; Hawkins, M. S. Carrier Resins With Improved RH   Sensitivity. Patent # US2014370432-A1; DE102014210144-A1;   CA2852484-A1;JP2015001744-A; CN104238293-A; BR102014014165-A2.

      Carrier composition, useful in developer that is useful for   forming animage, comprises polymer coating resin comprised of   polymer derived fromacrylate monomer comprising bulky   tertiary carbon group, conductive material,and magnetic core. The   instant disclosure describes acrylate-coated carrier resins   exhibiting both high charge and improved RH   sensitivity, carrier compositions comprising the acrylate   coated carriers and developers comprising the carrier   resins. 

       

      6. Carrier Resins with Improved Relative Humidity Sensitivity.   United States. US2014302434-A1; JP2014203077-A;   US8974995-B2. 2013/04/03

      Patent Status: Granted/Issued

      Year Issued: 2014

      Veregin, R. P.; Li, Q.; Kovalenko, A.; Gusarov, S. Carrier Resins   with Improved Relative Humidity Sensitivity. 2014. Patent #   US2014302434-A1;JP2014203077-A; US8974995-B2.

      Carrier resin composition useful in a toner carrier for   developer, comprises monomer having substituted acrylic acid The   disclosure describes acrylate carrier resins, optionally,   with a C/O of at least about 4, comprising a   heterocycle comprising sulfur, exhibiting high charge and   improved RH sensitivity, carrier compositions comprising   the acrylate-coated carriers and developers comprising a   toner and the acrylate-coated carrier.

       

      7. Toner additives. United States. US2014154621-A1; CA2833604-A1;   JP2014115645-A; US8785092-B2; BR102013029346-A2. 2012/12/05.

      Patent Status: Granted/Issued

      Year Issued: 2014

      Veregin, R. P.; Li, Q.; Kovalenko, A.; Gusarov, S. Toner   additives. Patent # US2014154621-A1;CA2833604-A1; JP2014115645-A;   US8785092-B2; BR102013029346-A2.

      Toner composition, useful in a developer for forming an   xerographic image on a substrate, comprises toner particles   comprising a resin and a colorant, and surface additives   applied to a surface of the toner particles. The disclosure   relates generally to toner additives, and in particular,   toner additives that provide desired higher toner charge   and low relative humidity (RH) sensitivity. The toner   additives comprise titania nanotubes or titania   nanosheets in combination with or in place of the commonly   used anatase or rutile crystalline titania.

       

      8. Carboxylic acid or acid salt functionalized polyester   polymers. United States. US2013149643-A1; DE102012221640-A1;   CA2798404-A1; JP2013122050-A; MX2012014264-A1;   BR102012031669-A2. 2011/12/12.

      Patent Status: Granted/Issued

      Year Issued: 2013

      Moffat,K. A.; Farrugia, V. M.; Wosnick, J.; Kovalenko, A.;   Kobryn, A. E.; Gusarov, S.; Nikolíc, D. Carboxylic acid or   acid salt functionalized polyester polymers Patent #   DE102012221640-A1;   CA2798404-A1; JP2013122050-A;US2013149643-A1;   MX2012014264-A1; RU2012153119-A; BR102012031669-A2.

      Polyester polymer comprising at least two adjacent groups   comprising pendant carboxylic acid- or their salt groups,   useful in producing a toner for imaging devices. The present   disclosure describes a polyester that contains pluralpendant   adjacent carboxylic acid or acid salt side groups for use in   making a toner for use in imaging devices.

       

      Abstract:

      Address (URL):