Publication Details (including relevant citation information):
Publications
Journal Articles
1. Holovko, M.; Kovalenko, A.; Hirata, F.(2016). Partial molar volume of nonionic surfactants inaqueous solution studied by the KB/3D-RISM-KH theory. J. Molec. Liq.217: 103-111.
2. Rodrigo.L.Silveira, Stanislav R. Stoyanov, Andriy Kovalenko, Munir Skaf. (2016). Cellulose Aggregation under Hydrothermal Pretreatment Conditions. Biomacromolecules. 17(8): 2582-2590.
3. J. Johnson, D. A. Case, T. Yamazaki, S. Gusarov, A. Kovalenko, T. Luchko. (2016). Small molecule hydration energy and entropy from 3D-RISM. J. Phys. Condens. Matter. 28(34): 344002.
4. T. Luchko, N. Blinov, G.C. Limon, K.P. Joyce, A.Kovalenko. (2016). SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling. J. Comput. Aided Mol. Des.: 1-13.
5. Stepan Hlushak, Stanislav R. Stoyanov, and Andriy Kovalenko. (2016). A 3D-RISM-KH Molecular Theory of Solvation Study of the Effective Stacking Interactions of Kaolinite Nanoparticles in Aqueous Electrolyte Solution Containing Additives. J. Phys. Chem. C. 120, pp 21344–2(38): 21344–21357.
6. A,E.Kobryn, S. Gusarov, A. Kovalenko. (2016). A closure relation to molecular theory of solvation for macromolecules. J Phys Condens Matter. 28(40): 404003.
7. Kondratenko, M. ; Stoyanov, S. R.; Gusarov, S.; Kovalenko, A.; McCreery, R. L.(2015). Theoretical Modeling of Tunneling Barriers in Carbon-Based Molecular Electronic Junctions. J. Phys. Chem. C. 119: 11286–11295.
8. I. Omelyan and A. Kovalenko. (2015). MTS-MD of biomolecules steered with 3D-RISM-KH mean solvation forces accelerated with generalized solvation force extrapolation. J. Chem. Theory Comput.11: 1875–1895.
9. W.-J. Huang, N. Blinov, D. S. Wishart, and A. Kovalenko. (2015). Role of Water in Ligand Binding to Maltose-Binding Protein: Insight from a New Docking Protocol Based on the3D-RISM-KH Molecular Theory of Solvation. J. Chem. Inf. Model.55: 317-328.
10. R. L. Silveira, S. R. Stoyanov, S. Gusarov, M. S. Skaf, and A. Kovalenko. (2015). Supramolecular Interactions in Secondary PlantCell Walls: Effect of Lignin Chemical Composition Revealed with the MolecularTheory of Solvation. J. Phys. Chem. Lett.6: 206-211.
11. Kovalenko, A.(2015). Molecular theory of solvation: Methodology summaryand illustrations. Condens. Matter Phys.18: 32601: 1–24.
12. Lyubimova, O.; Stoyanov, S. R.; Gusarov, S.; Kovalenko, A.(2015). Electric Interfacial Layer of Modified CelluloseNanocrystals in Aqueous Electrolyte Solution: Predictions by the MolecularTheory of Solvation. Langmuir. 31: 7106−7116.
13. M. R. Lage,* S. R. Stoyanov, J. W. M. Carneiro, T. Dabros, and A. Kovalenko. (2015). Adsorption of Bitumen Model Compounds on Kaolinite in Liquid and Supercritical Carbon Dioxide Solvents: A Study by Periodic Density Functional Theory and Molecular Theory of Solvation. Energy & Fuels. 29: 2853-2863.
14. W.J. Huang, N. Blinov, and A. Kovalenko. (2015). Octanol–Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction. J. Phys. Chem. B. 119: 5588–5597.
15. A. Kobryn, D. Nikolíc, O. Lyubimova, S. Gusarov, and A. Kovalenko. (2014). DPD with an Effective Pair Potential fromIntegral Equation Theory of Molecular Liquids. J. Phys. Chem. B. 118: 12034-12049.
16. S. R. Stoyanov, O. Lyubimova, S. Gusarov, and A. Kovalenko. (2014). Computational Modeling of the Structure Relaxation and Dispersion Thermodynamics of Pristine and Modified Cellulose Nanocrystals in Solution, (invited paper). Nordic Pulp Paper Res. J.29: 144-155.
17. L. M. da Costa, S. R. Stoyanov, S. Gusarov, P. R. Seidl, J. W. de M. Carneiro, and A. Kovalenko. (2014). Computational Study of the Effect of Dispersion Interactions on the Thermochemistry of Aggregation of Fused Polycyclic Aromatic Hydrocarbons as Model Asphaltene Compounds in Solution. J. Phys. Chem. A. 118: 896-908.
18. W.-J. Huang, G. K. Dedzo, S. R. Stoyanov, O. Lyubimova, S. Gusarov, S. Singh, H. Lao, A. Kovalenko, and C. Detellier. (2014). Molecule-SurfaceRecognition between Heterocyclic Aromatic Compounds and Kaolinite in TolueneInvestigated by Molecular Theory of Solvation and Thermodynamic and Kinetic Experiments. J. Phys. Chem. C. 118: 23821-23834.
19. A. Kovalenko. (2013). Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials, (invited paper). Pure Applied Chem.85: 159-199.
20. J. Fafard, O. Lyubimova, S. Stoyanov, G. Kenne Dedzo, S. Gusarov, A. Kovalenko, and C. Detellier. (2013). Adsorption of Indole on Kaolinite in Non-aqueous Media: Organoclay Preparation and Characterization, and 3D-RISM-KH Molecular Theory of Solvation Investigation. J. Phys. Chem. C. 117: 18556-18566.
21. R. P. N. Veregin, M. S. Hawkins, Q. Li, S. Gusarov, and A. Kovalenko. (2013). Linking the Chemistry and Physics of Electronic Charge Transfer in Insulators: Theory and Experiment. J. Imaging Sci. Technol.57: 030401-12.
22. R. L. Silveira,* S. R. Stoyanov, S. Gusarov, M. S. Skaf, and A. Kovalenko. (2013). Plant Biomass Recalcitrance: Effect of Hemicellulose Composition on Nanoscale Forces that Control Cell Wall Strength. J. Am. Chem. Soc. Communication. 135: 19048–19051.
23. S. Gusarov, Yu. Yu. Dmitriev, S. R. Stoyanov, and A. Kovalenko. (2013). Koopmans' MCSCF Fukui Functions and MCSCF Perturbation Theory, (invited paper). Can. J. Chem.91(9): 886-893.
24. S. R. Stoyanov, C.-X. Yin, M. R. Gray, J. M. Stryker, S. Gusarov, and A. Kovalenko. (2013). Density Functional Theory Investigation of the Effect of Axial Coordination and Annelation on the Absorption Spectroscopy of Nickel(II) and Vanadyl Porphyrins Relevant to Bitumen and Crude Oils, (invited paper). Can. J. Chem.91(9): 872-878.
25. N. S. Pagadala, T. C. Bjorndahl, N. Blinov, A. Kovalenko, and D. S. Wishart. (2013). Molecular docking of thiamine reveals similarity in binding properties between the prion protein and other thiamine binding proteins. J. Molec. Modeling, DOI 10.1007/s00894-013-1979-5. : 1-11.
26. D. Nikolic, K. A. Moffat, V. M. Farrugia, A. E. Kobryn, S. Gusarov, J. H. Wosnick, and A. Kovalenko. (2013). Multi-Scale Modeling and Synthesis of Polyester Ionomers. Phys. Chem. Chem. Phys.15: 6128-6138.
27. I. P. Omelyan and A. Kovalenko. (2013). Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces. J. Chem. Phys.139: 244106-23.
28. A. Kovalenko, A. E. Kobryn, S. Gusarov, O. Lyubimova, X. Liu, N. Blinov, and M. Yoshida. (2012). Molecular Theory of Solvation for Supramolecules and Soft Matter Structures: Application to Ligand Binding, Ion Channels. Soft Matter. 8: 1508-1520.
29. I. P. Omelyan and A. Kovalenko. (2012). Interpretation of atomic motion in flexible molecules: Accelerating molecular dynamics simulations. Phys. Rev. E. 85: 026706-16.
30. J. D. Krabbe,* V. Leontyev,* M. T. Taschuk, A. Kovalenko, and M. J. Brett. (2012). Square spiral photonic crystal with visible band gap. J. Appl. Phys.111: 064314-6.
31. L. M. da Costa,* S. R. Stoyanov, S. Gusarov, X. Tan, M. R. Gray, J. M. Stryker, R. Tykwinski, J. W. de M. Carneiro, P. R. Seidl, and A. Kovalenko. (2012). Density Functional Theory Investigation of the Contributions of π−π Stacking and Hydrogen-Bonding Interactions to the Aggregation of Model Asphaltene Compounds. Energy & Fuels. 26: 2727-2735.
32. I. P. Omelyan and A. Kovalenko. (2012). Generalized canonical-isokinetic ensemble: Speeding up multiscale molecular dynamics and coupling with 3D molecular theory of solvation, (invited paper). Molec. Simul.39: 25-48.
33. S. Gusarov, B. S. Pujari, and A. Kovalenko. (2012). Efficient treatment of solvation shells in 3D molecular theory of solvation. J. Comput. Chem.33: 1478-1494.
34. L. M. da Costa,* S. Hayaki,* S. R. Stoyanov, S. Gusarov, X. Tan, M. R. Gray, J. M. Stryker, R. Tykwinski, J. W. de M. Carneiro, H. Sato, P. R. Seidl, and A. Kovalenko. (2012). 3D-RISM-KH Molecular Theory of Solvation and Density Functional Theory Investigation of the Role of Water in the Aggregation of Model Asphaltenes. Phys. Chem. Chem. Phys.14: 3922-3934.
35. D. Nikolic, N. Blinov, D. Wishart, and A. Kovalenko. (2012). 3D-RISM-DOCK: A New Fragment-Based Drug Design Protocol, J. Chem. Theory Comput.J. Chem. Theory Comput.8: 3356-3372.
36. L. Laurentius, S. R. Stoyanov, S. Gusarov, A. Kovalenko, R. Du, G. Lopinski, and M. T. McDermott. (2011). Diazonium derived aryl films on gold nanoparticles: Evidence for a carbon-gold covalent bond. ACS Nano. 5: 4219-4227.
37. T. Imai, N. Miyashita, Y. Sugita, A. Kovalenko, F. Hirata, and A. Kidera. (2011). Functionality Mapping on Internal Surfaces of Multidrug Transporter AcrB Based on Molecular Theory of Solvation: Implications for Drug Efflux Pathway, (Journal Cover). J. Phys. Chem. B; Journal Cover.115: 8288-8295.
38. M. C. Stumpe, N. Blinov, D. Wishart, A.Kovalenko, V. S. Pande. (2011). Calculation of Local Water Densities in Biological Systems - A Comparison of Molecular Dynamics Simulations and the 3D-RISM-KH Molecular Theory of Solvation, (Journal Cover). J. Phys. Chem. B; Journal Cover.115: 319-328.
39. T. Yamazaki and A. Kovalenko. (2011). Spatial Decomposition of Solvation Free Energy Based on the 3D Integral Equation Theory of Molecular Liquid: Application to Miniproteins. J. Phys. Chem. B. 115: 310-318.
40. A. E. Kobryn and A. Kovalenko. (2011). Slip boundary conditions in nanofluidics from the molecular theory of solvation, (invited paper). Molec. Simul.37: 733-737.
41. B. S. Pujari, S. Gusarov, M. Brett, and A. Kovalenko. (2011). Single-side-hydrogenated graphene: Density functional theory predictions. Phys. Rev. B Rapid Communications. 84: 041402(R)-4.
42. I. P. Omelyan and A. Kovalenko. (2011). Overcoming the barrier on time step size in molecular dynamics simulation of molecular liquids. J. Chem. Theory Comput.8: 6-16.
43. I. P. Omelyan and A. Kovalenko. (2011). Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. II. Canonical and isokinetic ensembles. J. Chem. Phys.; Highlighted in Virtual J. Biol. Phys. Res., 23(1), Jan 2012, APS; Highlighted in Virtual J. Ultrafast Sci., 10(10), Oct 2011, AIP and APS.135: 234107-12.
44. I. P. Omelyan and A. Kovalenko. (2011). Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. I. Microcanonical ensemble. J. Chem. Phys.; Highlighted in Virtual J. Ultrafast Sci., 10(10), Oct 2011, AIP and APS.135: 11410-9.
45. A. Kovalenko and N. Blinov. (2011). Multiscale methods for nanochemistry and biophysics in solution, (invited paper). J. Molec. Liq,. 164: 101-112.
46. N. Blinov, L. Dorosh, D. Wishart, and A. Kovalenko. (2011). 3D-RISM-KH approach for biomolecular modeling at nanoscale: Thermodynamics of fibril formation and beyond, (invited paper). Molec. Simul.37: 718-728.
47. S. R. Stoyanov, C.-X. Yin, M. R. Gray, J. Stryker, S. Gusarov, and A. Kovalenko. (2010). Computational and Experimental Study of the Structure, Binding Preferences, and Spectroscopy of Nickel(II) and Vanadyl Porphyrins in Petroleum. J. Phys. Chem. B. 114: 2180-2188.
48. J. Kaminski,* S. Gusarov, T. Wesolowski, and A. Kovalenko. (2010). Modeling Solvatochromic Shifts Using the Orbital-Free Embedding Potential at Statistically Mechanically Averaged Solvent Density. J. Phys. Chem. A. 114: 6082-6096.
49. T. Luchko,* S. Gusarov, D. R. Roe, C. Simmerling, D. A. Case, J. Tuszynski, and A. Kovalenko. (2010). Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber. J. Chem. Theory Comput.6: 607-624.
50. K. P. Santo, A. Kovalenko, and M. Stepanova. (2010). Self-Consistent Field Modeling of 3D Morphologies of Branched Lipid Surfactant at Air-Water Interface. Macromol. Theory Simul.19: 228-239.
51. N. Blinov, L. Dorosh, D. Wishart, and A. Kovalenko. (2010). Association thermodynamics and conformational stability of β-sheet Amyloid β(17-42) oligomers: effects of E22Q (Dutch) mutation and charge neutralization. Biophys. J.98: 282-296.
52. G. Borzsonyi, R. L. Beingessner, T. Yamazaki, J.-Y. Cho, A. J. Myles, M. Malac, R. Egerton, M. Kawasaki, K. Ishizuka, A. Kovalenko, and H. Fenniri. (2010). Water-Soluble J-Type Rosette Nanotubes with Giant Molar Ellipticity. J. Am. Chem. Soc. Communication. 132: 15136-15139.
53. G. Borzsonyi, R. S. Johnson, J.-Y. Cho, T. Yamazaki, R. L. Beingessner, A. Kovalenko, and H. Fenniri. (2010). Rosette Nanotubes with 1.4 nm Inner Diameter from a Tricyclic Variant of the LehnMascal GC Base. ChemComm.46: 6527-6529.
54. T. Yamazaki, A. Kovalenko, V. V. Murashov, and G. N. Patey. (2010). Ion solvation in a water-urea mixture. J. Chem. Phys. B. 114: 613-619.
55. A. Bergren, R. L. McCreery, S. R. Stoyanov, S. Gusarov, and A. Kovalenko. (2010). Electronic Characteristics and Charge Transport Mechanisms for Large Area Aromatic Molecular Junctions. J. Phys. Chem. C. 114: 15806-15815.
56. T. Yamazaki, H. Fenniri, and A. Kovalenko. (2010). Structural Water Drives Self-assembly of Organic Rosette Nanotubes and Holds Host Atoms in the Channel. ChemPhysChem.11: 361-367.
57. S. Genheden, T. Luchko,* S. Gusarov, A. Kovalenko, and U. Ryde. (2010). An MM/3D-RISM Approach for Ligand-Binding Affinities. J. Phys. Chem. B. 114: 8505-8516.
58. R. Chhabra, J. Moralez, J. Raez, T. Yamazaki, J.-Y. Cho, A. Myles, A. Kovalenko, and H. Fenniri. (2010). One-Pot Nucleation, Growth, Morphogenesis, and Passivation of 1.4 nm Au Nanoparticles on Self-Assembled Rosette Nanotubes. J. Am. Chem. Soc. Communication. 132: 32-33.
Book Chapters
1. Andriy Kovalenko. (2015). Partial Molar Volumes of Proteins in Solution. 2. Prediction by Statistical-Mechanical, 3D-RISM-KB Molecular Theory of Solvation, (invited chapter). Emmerich Wilhelm and Trevor Letcher. Volume Properties: Liquids, Solutions and Vapours. Royal Society of Chemistry Press, IUPAC, 575-610.
2. A. Kovalenko. (2016). Multiscale modeling of solvation. C. Breitkopf and K. Swider. Springer Handbook of Electrochemistry. Springer.
3. S. R. Stoyanov, S. Gusarov and A. Kovalenko. (2011). Multiscale Modeling of the Adsorption Interaction between Bitumen Model Compounds and Zeolite Nanoparticles in Gas and Liquid Phase, (invited). M. Meunier. Industrial Applications of Molecular Simulations. Taylor and Francis, 203-230.
4. T. Imai, N. Yoshida, A. Kovalenko, and F. Hirata. (2010). A Statistical Mechanics Theory of Molecular Recognition. K. Kuwajima, Y. Goto, F. Hirata, M. Terazima, M. Kataoka. Water and Biomolecules - Physical Chemistry of Life Phenomena. Springer Science, 187-210.
5. A. Kovalenko and F. Hirata. (2005). A molecular theory of solutions at liquid interfaces. H. Watarai, N. Teramae, and T. Sawada. Interfacial Nanochemistry: Molecular Science and Engineering at Liquid-Liquid Interfaces. Springer, 97-125.
6. A. Kovalenko. (2003). Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces. F. Hirata. Molecular Theory of Solvation. Kluwer Academic Publishers, 169-275.
Conference Publications
1. (2015). Molecular theory of solvation based miltiscale modeling of biomolecular systems and functions. Conference Abstracts. 2015 Canadian Association of Physicists Congress, Edmonton, Canada, 2015/6.
2. (2015). Structural Solvent in Protein Functions, Octanol-Water Partition Coefficients, and Protein Folding: Prediction with 3D-RISM-KH Molecular Theory of Solvation. Conference Abstracts. North American UGM & Conference 2015, Montreal, Canada, 2015/6
3. (2015). MD of biomolecules steered with mean solvation forces obtained from 3D-RISM-KH molecular theory of solvation. Computational Trends in Solvation and Transport in Liquids. Lecture Notes, eds. G. Sutmann et al. Forschungszentrum Juelich Series of Schools in Computational Science: Computational Trends in Solvation and Transport in Liquids, supported by CECAM (Centre Europeen de Calcul Atomique et Moleculaire) and RESOLV, Juelich, Germany (383-418), 2015/3
4. (2014). Multiscale Theory, Modeling, and SimulationBased on Statistical Mechanics: Protein Structure, Molecular Recognition, andTranslocation of Antiprion Therapeutic Agents. Conference Abstracts. International Conference and Workshop on Molecular Origins of Protein Misfolding and Neurodegenerative Disease, Vancouver, Canada, 2015/6
5. (2014). Statistical Mechanics Based, Multiscale Modelingof Effective Interactions in Solution and Soft Matter Systems with Clay andCellulose Nanoparticles. Conference Abstracts. Brazil-Canada workshop on polymers for oil production, 2-4 December 2014, University City, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil, 2014/12
6. (2013). Multiscale modeling of cell walls nanostructure for overcoming biomass recalcitrance and of cellulose nanocrystals for rational design of biomaterials (keynote). Conference Abstracts. International Conference of the European COST Action FP1105 on “Understanding wood cell wall structure, biopolymer interaction and composition: implications for current products and new material innovation”, 8-10 October 2013, Trabzon, Turkey.,
7. (2013). Molecular theory of solvation and electrochemistry in nanoporous electrodes. Conference Abstracts. 246th ACS National Meeting, 8-12 September 2013, Indianapolis, IN, USA, 2013/9
8. (2013). Multiscale Modeling of Solvation and Effective Interactions of Functionalized Cellulose Nanocrystals, (invited paper). USDA Forest Prod. Lab, NIST, U of Maine, TAPPI Press. 2013 TAPPI International Conference on Nanotechnology for Renewable Materials, 24-27 June 2013, Stockholm, Sweden, (147-150), 2013/7
9. (2013). A Closer Look at the HPC Behind Multiscale Theory and Modeling (invited). Conference Abstracts. WestGrid and Compute Canada Seminar Series, 6 March 2013, 2013/3
10. (2012). Molecular Theory of Solvation and Electrical Double Layer in Nanoporous Carbon Electrodes. ECS Transactions - Boston, MA, vol. 41, iss 22. 220th Electrochemical Society Meeting, Symposium B5 – Electrochemical Capacitors: Fundamentals to Applications, 9-14 October 2011, Boston MA, USA, (133-149), 2012/10
11. (2012). Statistical-mechanical, 3D molecular theory of solvation predicts the role of water in soft matter and biomolecular systems. Conference Abstracts. 244th ACS National Meeting, 19-23 August 2012, Philadelphia, PA, USA, 2012/8
12. (2012). Statistical Mechanics Based Multiscale Theory of Synthetic Organic and Biomolecular Nanosystems and Nanomaterials. Conference Abstracts. 95th Canadian Chemistry Conference and Exhibition, 26-30 May 2012, Calgary, AB, Canada, 2012/5
13. (2011). Density Functional Investigation Of Charge Transfer In Organic Solar Cells. ECS Transactions - Boston, MA, Vol. 41, iss. 4. 220th Electrochemical Society Meeting, 9-14 October 2011, Boston MA, USA, (129-134), 2011/10
14. (2011). Molecular theory of solvation and electrical double layer in nanoporous carbon electrodes. Conference Abstracts. 220th Electrochemical Society Meeting, Symposium B5 – Electrochemical Capacitors: Fundamentals to Applications, 9-14 October 2011, Boston MA, USA, 2011/10
15. (2011). Multiscale theory and modeling of chemical and biological nanosystems in solution, (keynote). Conference Abstracts. 32nd International Conference on Solution Chemistry, 28 Aug – 02 Sept 2011, La Grande Motte, France, (35-40), 2011/8
16. (2011). 3D-RISM-KH theory unveils function related properties of biomolecular and synthetic organic nanosystems. Conference Abstracts. International Symposium on Molecular Science of Fluctuations toward Biological Functions, 28-29 March 2011, Okazaki, Japan., 2011/3
17. (2010). Structural solvent in self-assembly and functions of supramolecular nanoarchitectures and biomolecular systems. Conference Abstracts. International Chemical Congress PACIFICHEM 2010, Symposium on New Experimental and Computational Probes of Water in Biological Systems, 15-20 December 2010, Honolulu, Hawaii, USA, 2010/12
18. (2010). Theory, modeling, and simulation on multiple scales, (keynote). Conference Abstracts. 2010 TAPPI International Conference on Nano for the Forest Product Industry, 27-29 September 2010, Espoo, Finland., 2010/9
19. (2010). Multiscale methods for nanochemistry and biophysics in solution, (plenary). Conference Abstracts. European Molecular Liquids Group (EMLG) and the Japanese Molecular Liquids Group (JMLG) Annual Meeting 2010, Complex liquids: Modern trends in exploration, understanding and application, 5-9 September 2010, Lviv, Ukraine., 2010/9
20. (2010). 3D Molecular Theory of Solvation Coupled with MD for Nanomedical Sciences. Proc. 2010 NSTI Nanotechnology Conference and Expo, CRC Press, Vol.3. 2010 NSTI Nanotechnology Conference and Expo, 21-24 June 2010, Anaheim, California, USA, (440-443), 2010/6
21. (2010). Slip Boundary Conditions in Nanofluidics from the Molecular Theory of Solvation. Proc. 2010 NSTI Nanotechnology Conference and Expo, CRC Press, Vol.2. Symposium on Micro & Nano Fluidics, 2010 NSTI Nanotechnology Conference and Expo, 21-24 June 2010, Anaheim, California, USA, (428-431), 2010/6
22. (2010). 3D-RISM-KH approach for biomolecular modeling at nanoscale: Thermodynamics of fibril formation and beyond. Proc. 2010 NSTI Nanotechnology Conference and Expo, CRC Press, Vol.3. 2010 NSTI Nanotechnology Conference and Expo, 21-24 June 2010, Anaheim, California, USA, (436-439), 2010/6
23. (2010). 3D Molecular Theory of Solvation for Nanochemistry in Solution, Symposium on Computational Methods.Proc. 2010 NSTI Nanotechnology Conference and Expo, CRC Press, Vol.2. 2010 NSTI Nanotechnology Conference and Expo, 21-24 June 2010, Anaheim, California, USA, (665-668), 2010/6
24. (2010). Application of Computational Quantum Chemistry to Nanotechnological Problems, Symposium on Computational Methods. Proc. 2010 NSTI Nanotechnology Conference and Expo, CRC Press, Vol.2. Symposium on Computational Methods, Simulation & Software Tools, in: Technical Proc. 2010 NSTI Nanotechnology Conference and Expo, 21-24 June 2010, Anaheim, California, USA, (657-660), 2010/6
25. (2009). Multiscale Theories in Computational Chemistry: From Super CI and DFT for Electronic Structure to 3D Molecular Theory of Solvation and to Hydrodynamic Boundary Conditions. Conference Abstracts. 7th Canadian Computational Chemistry Conference (CCCC7), 20-24 July 2009, Halifax, NS, Canada, 2010/7
26. (2009). Association Thermodynamics and Solvation Effects in Amyloid Fibrils and Β-Sheet Oligomers. Conference Abstracts. PrP Canada 2009 Conference Satellite Event: New Discoveries & Novel Approaches in Prion Structure & Dynamics, 4 March 2009, Edmonton, AB, Canada, 2010/3
27. (2008). Nanoscience and Nanotechnology for Energy Storage, (keynote). Conference Abstracts. NanoEnergy 2008 Conference, 21-23 October 2008, Paris, France., 2008/10
28. (2008). Molecular Theory of Solvation: a Novel Tool for Predictive Multiscale Modeling of Chemical and Biological Systems in Solution. Conference Abstracts. 1st International Conference of the Grand Challenge to Next-Generation Integrated Nanoscience, 3-6 June 2008, Tokyo, Japan, 2008/6
29. (2006). Molecular Theory of Solvation: A Novel Tool of Computational Chemistry. Conference Abstracts. 6th Canadian Computational Chemistry Conference, 26-30 July 2006, Vancouver, British Columbia, Canada, (31-32), 2006/7
Intellectual Property
Patents
1. Resin particles for toner for developing agent for image formation. United States. US2015183899-A1. 2014/09/24
Patent Status: Granted/Issued
Veregin,R. P.; Li, Q.; Kovalenko, A.; Gusarov, S. Resin particles for toner for developing agent for image formation. Patent # US2015183899-A1.
Comprises specific ester-based monomer(s) or itsisomers, and has carbon/oxygen ratio of above preset value and size of presetvalue.
2. Carrier resins with improved relative humidity sensitivity. United States. US2014302435-A1; JP2014203078-A; US9069275-B2. 2013/04/03
Patent Status: Granted/Issued
Veregin, R. P.; Li, Q.; Kovalenko, A.; Gusarov, S.;Makeiff, D.; Farrugia, V.; Hawkins, M. S. Carrier resins with improved relative humidity sensitivity. Patent# US2014302435-A1; JP2014203078-A; US9069275-B2.
Coating resin comprising monomer units, useful in magnetic carrier of developer that is useful for forming image, where monomer units comprise vinyl group and a carbonis optionally substituted with methyl group. The disclosure generally describes carrier resins, and in particular, resins used for carrier coatings which include at least one ester functional group and at least one cyclic aliphatic group containing at least one nitrogen atom in the cyclic ring structure. Carriers having such resins in the coating exhibit high charge and excellent relative humidity (RH) sensitivity of charge to changing environmental conditions.
3. Carrier Resins With Improved RH Sensitivity. United States. US2014370435-A1; JP2015000981-A. 2013/06/14
Patent Status: Granted/Issued
Year Issued: 2014
Veregin,R. P.; Li, Q.; Kovalenko, A.; Gusarov, S.; Vanbesien, D. W.; Hawkins, M. S. Carrier Resins With Improved RH Sensitivity. Patent # US2014370435-A1;JP2015000981-A.
Coating resin comprising monomer units, useful in magnetic carrier of developer that is useful for forming image, where monomer units comprise vinyl group and a carbonis optionally substituted with methyl group. The instant disclosure describes methacrylate coated carrier resins with aromatic substituent groups with optionally carbon atoms replaced by heteroatoms such as S, N, and O for charge control and improved RH sensitivity.
4. Negative Charge Carrier Resins With RH Sensitivity. United States. US2014370429-A1; DE102014210143-A1; CA2852333-A1; JP2015001743-A. 2013/06/14
Patent Status: Granted/Issued
Year Issued: 2014
Veregin, R. P.; Li, Q.; Kovalenko, A.; Gusarov, S.; Vanbesien, D. W.; Hawkins, M. S. Negative Charge Carrier Resins With RH Sensitivity. Patent # US2014370429-A1; DE102014210143-A1; CA2852333-A1; JP2015001743-A.
Carrier composition used in developer, comprises polymer coating resin containing methacrylate monomer with hydrophobic substituent, and having highest occupied molecular orbital and electron density more/less than molecular orbitals. The instant disclosure describes methacrylate coated carrier resins with hydrophobic substituents for charge control and improved RH sensitivity.
5. Carrier Resins With Improved RH Sensitivity. United States. US2014370432-A1; DE102014210144-A1; CA2852484-A1; JP2015001744-A; CN104238293-A; BR102014014165-A2. 2013/06/14.
Patent Status: Granted/Issued
Year Issued: 2014
Veregin, R. P. N.; Li, Q.; Kovalenko, A.;Gusarov, S.; Vanbesien, D. W.; Hawkins, M. S. Carrier Resins With Improved RH Sensitivity. Patent # US2014370432-A1; DE102014210144-A1; CA2852484-A1;JP2015001744-A; CN104238293-A; BR102014014165-A2.
Carrier composition, useful in developer that is useful for forming animage, comprises polymer coating resin comprised of polymer derived fromacrylate monomer comprising bulky tertiary carbon group, conductive material,and magnetic core. The instant disclosure describes acrylate-coated carrier resins exhibiting both high charge and improved RH sensitivity, carrier compositions comprising the acrylate coated carriers and developers comprising the carrier resins.
6. Carrier Resins with Improved Relative Humidity Sensitivity. United States. US2014302434-A1; JP2014203077-A; US8974995-B2. 2013/04/03
Patent Status: Granted/Issued
Year Issued: 2014
Veregin, R. P.; Li, Q.; Kovalenko, A.; Gusarov, S. Carrier Resins with Improved Relative Humidity Sensitivity. 2014. Patent # US2014302434-A1;JP2014203077-A; US8974995-B2.
Carrier resin composition useful in a toner carrier for developer, comprises monomer having substituted acrylic acid The disclosure describes acrylate carrier resins, optionally, with a C/O of at least about 4, comprising a heterocycle comprising sulfur, exhibiting high charge and improved RH sensitivity, carrier compositions comprising the acrylate-coated carriers and developers comprising a toner and the acrylate-coated carrier.
7. Toner additives. United States. US2014154621-A1; CA2833604-A1; JP2014115645-A; US8785092-B2; BR102013029346-A2. 2012/12/05.
Patent Status: Granted/Issued
Year Issued: 2014
Veregin, R. P.; Li, Q.; Kovalenko, A.; Gusarov, S. Toner additives. Patent # US2014154621-A1;CA2833604-A1; JP2014115645-A; US8785092-B2; BR102013029346-A2.
Toner composition, useful in a developer for forming an xerographic image on a substrate, comprises toner particles comprising a resin and a colorant, and surface additives applied to a surface of the toner particles. The disclosure relates generally to toner additives, and in particular, toner additives that provide desired higher toner charge and low relative humidity (RH) sensitivity. The toner additives comprise titania nanotubes or titania nanosheets in combination with or in place of the commonly used anatase or rutile crystalline titania.
8. Carboxylic acid or acid salt functionalized polyester polymers. United States. US2013149643-A1; DE102012221640-A1; CA2798404-A1; JP2013122050-A; MX2012014264-A1; BR102012031669-A2. 2011/12/12.
Patent Status: Granted/Issued
Year Issued: 2013
Moffat,K. A.; Farrugia, V. M.; Wosnick, J.; Kovalenko, A.; Kobryn, A. E.; Gusarov, S.; Nikolíc, D. Carboxylic acid or acid salt functionalized polyester polymers Patent # DE102012221640-A1; CA2798404-A1; JP2013122050-A;US2013149643-A1; MX2012014264-A1; RU2012153119-A; BR102012031669-A2.
Polyester polymer comprising at least two adjacent groups comprising pendant carboxylic acid- or their salt groups, useful in producing a toner for imaging devices. The present disclosure describes a polyester that contains pluralpendant adjacent carboxylic acid or acid salt side groups for use in making a toner for use in imaging devices.
Abstract: