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Abstract 
 
 
 Numerical computation of a ground state of a one-dimensional two-body 
system was done to obtain a best numerical solution.  Since the degree of the 
self-relativeerror has become the order of10 to the 14−  power, this numerical solution 
may be called quasi-correct solution.  From this quasi-correct wave function one can 
calculate one-body density distribution function.  The square root function of this 
one-body density function may be regarded as a one-body wave function.  In the 
conventional Self Consistent Field theory scheme, such a one-body wave function is 
assumed to satisfy the associated set of integro-differential equations in which one-body 
wave function satisfies a Schroedinger-like equation that involves an average potential, 
that is, the self consistent potential term.  The afore mentioned semi-rigorous 
numerical solution can be used to compute both of such an average potential and 
aabsolutely correct one-body potential.  Doing these computations, one must notice a 
significant difference between the theoreticalself consistent field and the numerically 
correct real average field.  Based on this case study, one cannot help but deny the 
backbone that is running through theconventional Self Consistent Field theory. 
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   Model system 
 
 As a model system for which the ground state seeking computation is done, the 
author chose a one-dimensional two particle system.  These two particles are repelling 
with each other, but both of them are contained in a mother potential well.  This may 
be rather called a three body problem.  But since the mother well potential is fixed in 
space, the author named this case study a two-body problem.  In practical research, 
computation on three-dimensional problem may rather be preferred for it is more 
realistically depicting the real quantum mechanical objects like an atom.  The real 
electrons are repelling each other by inverse squared force, and are attracted by the 
nucleus by the same but negative inverse squared force.  In the real space, the electron 
can pass by the nucleus and other electrons because there is literally a passable side 
space near the nucleus.  In one-dimensional case, if the inter-particle force obeys the 
squared inverse law, then a particle cannot pass by another particle since there exists a 
singularity where the coordinates of both particles coincide.  In addition to this 
difficulty, the nuclear potential is also problematicsimilarly if it produces the inverse 
potential because it causes singularity when the distance between the nucleus and an 
electron becomes zero.  
  
 In order to avoid such singularity difficulty, the model system is designed to 
have a negative attractive Gaussian mother potential well and a positive Gaussian 
repulsive inter-particle potential.  In mathematical notation, these assumptions may 
be written like, 
 

{ }22exp)( σxAxV nn −−=   0>nA     (1) 

( ) ( ){ }22
2121 exp, σxxAxxV eeee −−+=  0>eeA     (2) 

 
 With these crude approximations for real Coulomb interaction, and using a 
unit system in which electron mass is unity and the Dirac constant is also unity, one can 
write the Hamiltonian as follows. 
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From this Hamiltonian, we will compute the ground state wave function numerically 
first. 
 
 
    
   Computational method 
 
 There may be various ways for computing the ground state wave function.  
The author applied the Kimball-Shortley method[1], [2] to this two-body system.  It is 
one kind of repetitive computation, but in principle, it can approach the truly exact 
numerical solution.  Many may regard it as a kind of variation method, but the truth is 
not.  Usual variation method is restricted and hinderedto approach the true solution by 
artificially imposed assumption or assumptions.  The Kimball-Shortley method has no 
assumption, will approach the true numerical solution infinitely.  In the initial trial of 
the Kimball-Shortley methoddone in the past, only one-dimensional case was 
investigated by the inventors.  So it was uncertain if this method can be expanded to 
many-dimensional case or many-body system.  Does the numerical solution converge to 
a sound solution?  To confirm it, only executing it actually was necessary. 
 
 Briefing the method is plain.  It just dicretizes and rewrites the original 
Schroedinger equation.  The reason why the author takes the trouble to introduce the 
procedure is to reinforce and endorse the rightness of the resultant wave function.  One 
may reach the same solution even if one uses other method. 
 
First, every spatial variable is discretized. 
 

ixx =1   Ni L1=      (4) 

jxx =2   Nj L1=      (5) 

( ) jixx ,21 , Ψ=Ψ        (6) 

( ) in VxV =1        (7) 

( ) jn VxV =2        (8) 

( ) jiee vxxV ,21 , =        (9) 
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where N is the number of lattice points.  Then the original Schroedinger equation may 
be written as, 
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where a is the lattice constant.  If one solves the ji ,Ψ from the above equation, then one 

will obtain the following equation. 
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In the Kimball-Schortley scheme, the left hand side is regarded as the renewedwave 
value calculated from the old wave function values on the four neighboring lattice points
( ) ( ) ( ) ( )1,,1,,,1,,1 −+−+ jijijiji in the numerator of the right hand side.  In a more 
explicit notation, 
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The energy representing variable E is defined as the energy expectation value in the 
Kimball-Schortley method.  It can be easily calculated. 
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But before calculating the equation (13), one needs to normalize the wave function. 
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Like the usual bounded wave function, boundary conditioning is also necessary. 
 

0,1 =Ψ OLD
j  for Nj L1=       (16) 

0, =Ψ OLD
jN  for Nj L1=       (17) 

01, =Ψ OLD
i  for Ni L1=       (18) 

0, =Ψ OLD
Ni  for Ni L1=       (19) 

 
The final procedure is to replace the old wave function with the new wave function. 
 

NEW
ji

OLD
ji ,, Ψ←Ψ        (20) 

 
For the last explanation of the Kimball-Schortley method, it must be added that as the 
initial wave function to start, one should employ a smoothly varying, variable 
exchangeable function. 
 

( ) ( )ijji
OLD

ji xxfxxf ,,, +=Ψ       (21) 

 
To sum up, the whole procedure of the Kimball-Schortley method comprises 
 
1. Definition of initial wave function given by the equation (21). 
2. Boundary conditioning defined by the equations (16) through (19). 
3. Normalization of the wave function defined by the equations (14) and (15). 
4. Energy expectation calculation given by the equation (13). 
5. Wave function renewal given by the equation (12). 
6. Replacement of old wave function with the renewed wave function (20). 
7. Return to 2 and repeat the cycle as many times as one wants. 
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Then, how much times of repetition is sufficient?  In order to answer this question, one 

can measure the degree of error that the wave function ji ,Ψ  makes when it is 

substituted into the original discretized Schroedinger equation (10).  The energy 
eigenvalue E in the right hand side of the equation (10) becomes space-independent 
constant only if the wave function becomes the true exact eigen function.  That is, in 
actual, the parameter E remains a function of space, that is, depends on the indices ji,

until the wave function ji ,Ψ  reaches the true solution.  So, a quantity can be defined to 

measure the degree of the local energy deviation. 
 

E
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where E is calculated by the equation (13) and local energy jiE , is calculated by 
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By scanning the indices ji, , one can detect the maximum deviation index MAXδ . 
 

{ }NjNijiMAX LL 1,1max , === δδ      (24) 

 
This error measure can be of course plotted as a function of cycle k . 
 

( )kMAXδ          (25) 
 
 Though all of cases is not investigated yet, there are cases that show well 
behavior of ( )kMAXδ .  For some cases ( )kMAXδ goes down to a minimum and then soars 
up.  For some other cases, it goes down to a minimum and then goes up a little, and 
then shows horizontal slight constant oscillation, that is, it becomes the so called 
metastable state.   The result of the case study presented in this article showed just 
the metastable feature. 
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Conditions and result of the case study 

 
The entire feature of the system is summarized in the three parameters which 

appeared in the equations (1) and (2) that define the potentials.  Arbitrarily, the 
following numbers were assigned for each. 
 

6
6
12.0

101
2
16
16

101

1

+=
−=

=
=
=
=
=

x
x
a
N

A
A

ee

n

σ
        (26) 

 
For the initial starting function, the following equation was used. 
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That is, the initial wave function is, 
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 Using these conditions and repeating the cycle about 3000 times, the following 
results have been obtained.  The characters of the effect of the repetition of cycle can be 
seen in Fig. 1 through Fig. 4.  Looking at the Fig.1, the energy expectation curve is 
seen to decrease and converge in well manner.  The Fig. 2 shows the extremely 
magnified portion of the horizontal part of the Fig. 1.  The Fig. 2 says that the energy 
minimum in a strict meaning occurs at the 1,873’th time of cycles.  But energy 
expectation only is not an absolute measure that assures the correctness of the wave 
function.  Rather the maximum deviation index ( )kMAXδ  is much more reliable.   
 Fig. 3 shows the curve of the maximum deviation index ( )kMAXδ . It decreases 
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sharply and stays almost zero after cycle 600.  However, when magnified as shown in 
Fig 4, it shows microscopic fluctuation, and attains a minimum value at a cycle 2581.  
After cycle around 2700, it shows apparently a metastable state.  Thus, the author 
adopted the 2581’th wave function as the most correct wave function.  To emphasize 
the point, at 2581’th cycle, the maximum deviation index MAXδ took the lowest value of 

order 1410 − .  This result almost completely justifies the correctness of the numerical 

wave function 2581
. jiΨ  

 In Fig. 5, the very wave function 2581
. jiΨ is depicted by three contour lines.  It 

is like a dumbbell-shaped island.  Fig.6 shows the square of thewave function 2581
. jiΨ , 

that is, the density distribution function ( ) jijixx ,

22581
,212 , ρρ =Ψ= .  This figure 

indicates that the two particles have tendency to exist at opposite coordinates since the 
density islands are seen to locate in the second and in the fourth quadrants.  For we 
assumed the repulsive potential between two particle and a fixed common potential well 
for them, these results are physically consistent with the assumed conditions 
 
 
 
 

The main issue 
 
 

The numerical solution thus far pursued and obtained in the foregoing sections 
may be obtained by other methods for solving eigenvalue equation.  The objective of 
the foregoing sections was to present the fundamental proof of the correctness of the 

resultant ground state wave function 2581
. jiΨ .  This wave function 2581

. jiΨ is never an 

approximation, rather it may even be said it is a correct solution.Here begins the main 
issue of the present article. 

By the following summation, one can calculate the one-body density 
distribution function. 
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This curve is shown in Fig. 7. 
 

The currently prevailing methods for solving many-body problem take anyway 
some method to decompose the entire wave function into an assembly of component 
function of one-body equation.  In such a scheme, a virtual concept of average field that 
acts on one particle from other particle is often assumed.  Such a concept may be 
conceivable if we know that the average potential can be calculated using the quantum 
mechanically behaving wave functions of the other particles[3].  At a first glance, such 
a strategy might seem to be correct.If such a many-body problem to one-body problem 
reduction were to be valid, then the square root of the above function (29) may be 
considered to represent one-body wave function that should satisfy a Self Consistent 
Field scheme. 
 

( ) ( )xx 1ρϕ ≡         (30) 
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In the present study, two identical particle are considered, so that if one 

particle can be in a state that is expressed by a function ( )1xϕ , then the other must be in 
the same state ( )2xϕ .  For convenience, let us change the mathematical notation from 
summation to usual integration.  By aforementioned definition, the self consistent 
potential ( )1xVSCF  that appears in the second term in the left hand side of equation (31) 
should be an averaged integration of the interaction potential ( )21, xxv  plus the 
common potential well nV . 

 

( ) ( ) ( ) ( ) ( ) i
j

jjinSCF VxvaxVdxxxxvxV +=+= ∑∫ 1,1221211 , ρρ    (32) 

 
Furthermore, there is another way for us to know the self consistent potential.  That is, 
since we are aware of the one-body wave function ( )1xϕ  already, we can calculate the 
assumed self consistent potential by solving the equation (31) reversely.  The result is 
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simply the following potential function named SCDV . 
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Both of the equation (32) and (33) is calculable separately.  The actual results are 
depicted as curves in the Fig. 8.  The ultimate doctrine of the prevailing Self Consistent 
Field method demands that they should coincide with each other.  Seeing the Fig. 8 in 
which ( )1xVSCF  is drawn by red curve and ( )1xVSCD  is drawn by blue curve, they are 

definitely different. 
 
 Therefore the fundamental base of the theory of the Self Consistent Field 
method is wrong, and at leastin this article, there has been found one exceptional case 
that the self consistency of the reduced one-body potential does not hold. 
 
 
 

Summary 
 

Two-body problem was solved by numerical method.  The degree of the 
accuracy was measured and ascertained to be good enough to call the numerical 
solution as a correct solution.  From the numerical solution thus obtained, one-body 
reduced problem was examined if the self consistent field method really holds or not.  
The result showed us that it does not hold at least for the case study presented in this 
article. 
 
 
 

Conclusion 
 
 
 One-dimensional two-body problem is relatively easy to solve numerically and 
consumes little time. And the correctness of the numerical solution can also be 
measured and ascertained easily.  Further it is possible to calculate accurate various 
functions from the resulted entire wave function.  There is no doubt about 
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thecorrectness of the functions thus calculated from the entire numerical wave function.  
The concept of one-body problem assumes the existence of the one-body reduced self 
consistent potential function that is calculable by some way.  Two ways for calculating 
such function, that is, a self consistent potential function, were raised in this article to 
find they do not coincide. 

Therefore, somewhere in the system of the theory of Self Consistent Field, 
there is a mistake.  Perhaps, it may be not possible to replace many-body problem with 
a one-body problem, and this in turn means that for a n-body d-dimensional problem, 
one cannot but solve the nd -variables partial differential equation anyway. 

 
 
 
 
                        ******************************* 
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