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Abstract

Numerical computation of a ground state of a one-dimensional two-body
system was done to obtain a best numerical solution. Since the degree of the
self-relativeerror has become the order of10to the—14 power, this numerical solution
may be called quasi-correct solution. From this quasi-correct wave function one can
calculate one-body density distribution function. The square root function of this
one-body density function may be regarded as a one-body wave function. In the
conventional Self Consistent Field theory scheme, such a one-body wave function is
assumed to satisfy the associated set of integro-differential equations in which one-body
wave function satisfies a Schroedinger-like equation that involves an average potential,
that is, the self consistent potential term. The afore mentioned semi-rigorous
numerical solution can be used to compute both of such an average potential and
aabsolutely correct one-body potential. Doing these computations, one must notice a
significant difference between the theoreticalself consistent field and the numerically
correct real average field. Based on this case study, one cannot help but deny the

backbone that is running through theconventional Self Consistent Field theory.



Model system

As a model system for which the ground state seeking computation is done, the
author chose a one-dimensional two particle system. These two particles are repelling
with each other, but both of them are contained in a mother potential well. This may
be rather called a three body problem. But since the mother well potential is fixed in
space, the author named this case study a two-body problem. In practical research,
computation on three-dimensional problem may rather be preferred for it is more
realistically depicting the real quantum mechanical objects like an atom. The real
electrons are repelling each other by inverse squared force, and are attracted by the
nucleus by the same but negative inverse squared force. In the real space, the electron
can pass by the nucleus and other electrons because there is literally a passable side
space near the nucleus. In one-dimensional case, if the inter-particle force obeys the
squared inverse law, then a particle cannot pass by another particle since there exists a
singularity where the coordinates of both particles coincide. In addition to this
difficulty, the nuclear potential is also problematicsimilarly if it produces the inverse
potential because it causes singularity when the distance between the nucleus and an

electron becomes zero.

In order to avoid such singularity difficulty, the model system is designed to
have a negative attractive Gaussian mother potential well and a positive Gaussian
repulsive inter-particle potential. In mathematical notation, these assumptions may

be written like,

V, (x) = —A, exp{— xz/az} A >0 1)

Vee (Xl’ X3 ) = +Aee exp{_ (Xl — Xy )2 /0-2} Aee >0 2

With these crude approximations for real Coulomb interaction, and using a
unit system in which electron mass is unity and the Dirac constant is also unity, one can

write the Hamiltonian as follows.

+Vee (X11X2)+Vn (X1)+Vn (XZ) (3)



From this Hamiltonian, we will compute the ground state wave function numerically
first.

Computational method

There may be various ways for computing the ground state wave function.
The author applied the Kimball-Shortley method[1], [2] to this two-body system. It is
one kind of repetitive computation, but in principle, it can approach the truly exact
numerical solution. Many may regard it as a kind of variation method, but the truth is
not. Usual variation method is restricted and hinderedto approach the true solution by
artificially imposed assumption or assumptions. The Kimball-Shortley method has no
assumption, will approach the true numerical solution infinitely. In the initial trial of
the Kimball-Shortley methoddone in the past, only one-dimensional case was
investigated by the inventors. So it was uncertain if this method can be expanded to
many-dimensional case or many-body system. Does the numerical solution converge to

a sound solution? To confirm it, only executing it actually was necessary.

Briefing the method is plain. It just dicretizes and rewrites the original
Schroedinger equation. The reason why the author takes the trouble to introduce the
procedure is to reinforce and endorse the rightness of the resultant wave function. One

may reach the same solution even if one uses other method.

First, every spatial variable is discretized.

X, = X i=1---N 4)
X, =X j=1---N (5)
\P(Xlixz):‘yi,j (6)
V, (%) =V, )
V(%) =V, (8)
Vee (Xl’ X, ) =Vi; 9



where N is the number of lattice points. Then the original Schroedinger equation may
be written as,
i+1,]

_ET =2¥,  + V¥ 1 Vija—2%,+¥ .

2 a’ 2 a’

+(Vi +VJ. +vi; VWi = E‘Pi'j (10)

where ais the lattice constant. If one solves the V', ; from the above equation, then one

will obtain the following equation.

b4 +\Pi_1’j +‘Pi’j+1 +lPi,j—l

o 4+2a%(V, +V, +v,, —E)

i+1, ]

(11)

In the Kimball-Schortley scheme, the left hand side is regarded as the renewedwave
value calculated from the old wave function values on the four neighboring lattice points
(i +1, j), (i -1 j), (i, ] +1), (i, J —l)in the numerator of the right hand side. In a more
explicit notation,

OLD OLD OLD OLD
+‘Pi_1’j + V¥ +‘Pi’j_1

i+1, j i,j+1

¥ NEW ¥
" 4+2a*(V, +V, +v,; — E)

(12)

The energy representing variable E is defined as the energy expectation value in the
Kimball-Schortley method. It can be easily calculated.

i+1,j i,j i,j+1

. _\Pi'jOLD (‘P oLD _Z\Pi’jOLD +\Pi—1,jOLD)_\P' oLp (‘P ’
=Ty - 2 : 2

+aZZZ‘I’”°LDZ(\/i +V, +vi'j)
T

(13)
But before calculating the equation (13), one needs to normalize the wave function.

Norm:\/aZZZ‘I’”OLD2 (14)
3



\P- _OLD
P 0 e (15)
' Norm

Like the usual bounded wave function, boundary conditioning is also necessary.

¥, 7 =0 for j=1.--N (16)
P, =0 forj=1-N (17)
.7 =0 fori=1.--N (18)
¥, =0 fori=1---N (19)

The final procedure is to replace the old wave function with the new wave function.

lPi'jOLD (_\Pi’jNEW (20)

For the last explanation of the Kimball-Schortley method, it must be added that as the
initial wave function to start, one should employ a smoothly varying, variable

exchangeable function.

y O = f(xi,xj)+ f(x. x.) (21)

1] ]

To sum up, the whole procedure of the Kimball-Schortley method comprises

Definition of initial wave function given by the equation (21).

Boundary conditioning defined by the equations (16) through (19).
Normalization of the wave function defined by the equations (14) and (15).
Energy expectation calculation given by the equation (13).

Wave function renewal given by the equation (12).

Replacement of old wave function with the renewed wave function (20).

N o o bk w NP

Return to 2 and repeat the cycle as many times as one wants.



Then, how much times of repetition is sufficient? In order to answer this question, one

can measure the degree of error that the wave function 't;; makes when it is

substituted into the original discretized Schroedinger equation (10). The energy
eigenvalue E in the right hand side of the equation (10) becomes space-independent
constant only if the wave function becomes the true exact eigen function. That is, in
actual, the parameter E remains a function of space, that is, depends on the indices |, j

until the wave function't; ; reaches the true solution. So, a quantity can be defined to

measure the degree of the local energy deviation.

§I.=‘E”—E‘

i E] (22)

where E is calculated by the equation (13) and local energy Ei’j is calculated by

V7 ob 2\'Pi1J-OLD + LPi_lijLD

aZ\Pi’jOLD

OLD OLD OLD
Y =2¥, 7+

i,j+1 i,j

aZ‘Pi’jOLD

i+1, j

+(\/i +Vj +vi'j)

1]

g --1 21
2 2
(23)

By scanning the indicesi, j , one can detect the maximum deviation index Oy -
Sy = Max{s, [i=1---N, j=1.--N| (24)

This error measure can be of course plotted as a function of cyclek .
Omax (k) (25)

Though all of cases is not investigated yet, there are cases that show well
behavior of Sy (k) For some cases Oy (k)goes down to a minimum and then soars
up. For some other cases, it goes down to a minimum and then goes up a little, and
then shows horizontal slight constant oscillation, that is, it becomes the so called
metastable state.  The result of the case study presented in this article showed just

the metastable feature.



Conditions and result of the case study

The entire feature of the system is summarized in the three parameters which
appeared in the equations (1) and (2) that define the potentials. Arbitrarily, the

following numbers were assigned for each.

A, =16

A, =16

o=2

N =101 (26)
a=0.12

X, =—6

Xio =10

For the initial starting function, the following equation was used.

f(x,X,)= exp{— (x, —1.5)° /a}exp{— (x, +1.5)° /a} (27)
That is, the initial wave function is,

¥, 00 = exp{— (x, —1.5)2/o}exp{— (x, +1.5F /a}

+exp{— (x, +1.5)2/a}exp{— (x, -1.5) /o‘} (28)

Using these conditions and repeating the cycle about 3000 times, the following
results have been obtained. The characters of the effect of the repetition of cycle can be
seen in Fig. 1 through Fig. 4. Looking at the Fig.1, the energy expectation curve is
seen to decrease and converge in well manner. The Fig. 2 shows the extremely
magnified portion of the horizontal part of the Fig. 1. The Fig. 2 says that the energy
minimum in a strict meaning occurs at the 1,873'th time of cycles. But energy
expectation only is not an absolute measure that assures the correctness of the wave
function. Rather the maximum deviation index Sy (k) is much more reliable.

Fig. 3 shows the curve of the maximum deviation index &y (k) It decreases



sharply and stays almost zero after cycle 600. However, when magnified as shown in
Fig 4, it shows microscopic fluctuation, and attains a minimum value at a cycle 2581.
After cycle around 2700, it shows apparently a metastable state. Thus, the author
adopted the 2581'th wave function as the most correct wave function. To emphasize
the point, at 2581'th cycle, the maximum deviation index d,,, took the lowest value of
order10 ™. This result almost completely justifies the correctness of the numerical
2581

wave function '

2581

In Fig. 5, the very wave function ‘Pi.j is depicted by three contour lines. It

is like a dumbbell-shaped island. Fig.6 shows the square of thewave function ‘Pi.jzm,

2

that is, the density distribution function pz(xl,xz):“}’- 2o =p;;- This figure

]

indicates that the two particles have tendency to exist at opposite coordinates since the
density islands are seen to locate in the second and in the fourth quadrants. For we
assumed the repulsive potential between two particle and a fixed common potential well

for them, these results are physically consistent with the assumed conditions

The main issue

The numerical solution thus far pursued and obtained in the foregoing sections
may be obtained by other methods for solving eigenvalue equation. The objective of

the foregoing sections was to present the fundamental proof of the correctness of the

2581 8

. . - 2581 .
resultant ground state wave function't , This wave function't; ;" is never an

approximation, rather it may even be said it is a correct solution.Here begins the main
issue of the present article.
By the following summation, one can calculate the one-body density

distribution function.



pl(xi ) = az‘\yi’jzsm
j

2
= azpi,j = P (29)
j

This curve is shown in Fig. 7.

The currently prevailing methods for solving many-body problem take anyway
some method to decompose the entire wave function into an assembly of component
function of one-body equation. In such a scheme, a virtual concept of average field that
acts on one particle from other particle is often assumed. Such a concept may be
conceivable if we know that the average potential can be calculated using the quantum
mechanically behaving wave functions of the other particles[3]. At a first glance, such
a strategy might seem to be correct.If such a many-body problem to one-body problem
reduction were to be valid, then the square root of the above function (29) may be
considered to represent one-body wave function that should satisfy a Self Consistent

Field scheme.

o(x)=/p,(x) (30)
10° \
_58)(_2 ¢(Xl)+VSCF (Xl )§0(X1) =E (o(xl) (31)

In the present study, two identical particle are considered, so that if one
particle can be in a state that is expressed by a function go(xl) , then the other must be in
the same state ga(xz). For convenience, let us change the mathematical notation from
summation to usual integration. By aforementioned definition, the self consistent
potential V. (Xl) that appears in the second term in the left hand side of equation (31)
should be an averaged integration of the interaction potential V(Xl, X2) plus the
common potential wellV, .

Vier (Xl) = IV(Xl’ X, )pl (Xz )dX2 +V, (Xl ) = az ViiP1 (Xj >+Vi (32)
j

Furthermore, there is another way for us to know the self consistent potential. Thatis,
since we are aware of the one-body wave function (o(xl) already, we can calculate the

assumed self consistent potential by solving the equation (31) reversely. The result is



simply the following potential function namedV, .

;;:2 (%) ; P(Xi1) - 2¢(2Xi )+ o(x,)
Veep (X, )= E+—2——=E'+ a (33)
scD ( 1) (D(Xl) (P(Xi )

Both of the equation (32) and (33) is calculable separately. The actual results are
depicted as curves in the Fig. 8. The ultimate doctrine of the prevailing Self Consistent
Field method demands that they should coincide with each other. Seeing the Fig. 8 in
which Vg (Xl) is drawn by red curve and V., (Xl) is drawn by blue curve, they are

definitely different.

Therefore the fundamental base of the theory of the Self Consistent Field
method is wrong, and at leastin this article, there has been found one exceptional case

that the self consistency of the reduced one-body potential does not hold.

Summary

Two-body problem was solved by numerical method. The degree of the
accuracy was measured and ascertained to be good enough to call the numerical
solution as a correct solution. From the numerical solution thus obtained, one-body
reduced problem was examined if the self consistent field method really holds or not.
The result showed us that it does not hold at least for the case study presented in this

article.

Conclusion

One-dimensional two-body problem is relatively easy to solve numerically and
consumes little time. And the correctness of the numerical solution can also be
measured and ascertained easily. Further it is possible to calculate accurate various

functions from the resulted entire wave function. There is no doubt about

10



thecorrectness of the functions thus calculated from the entire numerical wave function.
The concept of one-body problem assumes the existence of the one-body reduced self
consistent potential function that is calculable by some way. Two ways for calculating
such function, that is, a self consistent potential function, were raised in this article to
find they do not coincide.

Therefore, somewhere in the system of the theory of Self Consistent Field,
there is a mistake. Perhaps, it may be not possible to replace many-body problem with
a one-body problem, and this in turn means that for a n-body d-dimensional problem,

one cannot but solve the nd -variables partial differential equation anyway.

*hhkhkkhkkhkkkhkkhkhkhikikikikiihhhiikhikikikk
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Fig. 1. The absissa is Kimball cyele. For executing 3000 times of
computation, it eonsumed about 15 minutes. In the figure, the blue
energy track curve decreases very [ast at lirst. After about 200 cycle,
it show no apmm‘cm decreases that can be noticed by naked eve.
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can give an accurate solution for many body-svstem, it was lucky

to be able to observe the monotonically decreasing track of the

CIergy.
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Fig. 2. Magnified energy track, magnified by by a factor of 10 to the
power of +13 to show the location of the energy minimum at eyele 1873
Although the computer is treating and caleulating the very small
decimal, the usual computer does not display figures to the very

deep decimal places on the screen. As can be seen in this figure,

the microscope fluctuation 1s of the order of 10 to the power of -13.
The eause of this microscopic fluctuation is not clear whether it is

due to the machine error itsell or due to a character of the Kimball
Shortley method.
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Fig. 4. Magnified track of fuax(k), magnified by a factor 10 to the power of
the similar behavior are detected for other case, this track suggests
the soundness of the Kimball process. After around 2670 cyele, the curve
changes to a regularly and constantly oscillating eurve, i.e.. it becomes
metastable state. Though the energy expectation track reaches minimum
at cycle 1873 as shown 1n Fig. 2, mathematically speaking, to refer to the
Suax(k) minimum at eyele 2581 is better for defining the best solution of
the wave function.
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Fig. 5. Normalized contour line map
of the resultant ground state wave
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Fig. 7. Supposed one-body density function curve. One may imagine this curve as a
projection of the two-dimensional topography of Fig. 6 onto a xi-z plane where the z axis
1d defined as an axis perpendicular to the sheet. The two humped-camel-like feature 1s
logically probable. This is a mild expression that if one particle happens to be in the one
side mountain, either right or left, then the other particle left behind with which the
first particle repels, would exist in the other left hump reigion. Even as this figure
seems comprehensive, the accurate and detailed physical contents are still contained

in the original contour map of Fig. 5 or Fig. 6.
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Fig. 8. Ultimate curves that the present article would like to emphasize to the readers.
The green curve is a square root function of the one-body density distribution function
shown in Fig. 7, and is deemed to be a one-body wave fuction assumed to be in the Self
Consistenet Field theory scheme. If one assumes that a Schroedinger-like equation for
numerically known function p(x:) should hold, then the actually effecting one-body
potential Vaen can be caleulated at once. On the other hand, the main assumption of
the Sell Consistent Field theory requesis an exixience of averaged field Vacr that can be
assumed to be possible to be calculated from averaging integration of the function of
interparticle potential times the density distribution function of the other particle plus
the mother potential well, i.e., Vscr=lv{x1 x2)pi1{x2)dx:4Va(x1) . The doctrine of the Self
Consistent theory demands that the Vsep and Veer coincide with each other,
But in actuall practice, seeing the blue curve Vseo and red curve Vscr, they were found
not to coincide.

Vaer(x)

plx)=Vpi(x1)

15



