John Garner

3D tumor spheroids more accurate model for cancer research than conventional 2D

Blog Post created by John Garner on Aug 28, 2015

In addition to polymer products, Akina, Inc. also offers thermogelling matrices for growth of cells in 3-dimensional structures under the brand-name 3DCellMaker ( 3D tumor models present many advantages over 2D models in that they accurately represent in-vivo cancer conditions such as microenvironment parameters and cell-cell interactions. This makes these models more reliable in terms of predicting whether a therapeutic strategy will actually be effective in the clinic. Read more: Fitzgerald, Kathleen A., Meenakshi Malhotra, Caroline M. Curtin, Fergal J. O'Brien, and Caitriona M. O'Driscoll. "Life in 3D is never flat: 3D models to optimise drug delivery." Journal of Controlled Release 215 (2015): 39-54.

  “Abstract: The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies. Keywords: 3D cell culture; In vitro biopharmaceutical tool; Drug delivery; Biomaterials; The 3 Rs”

Fitzgerald, 2015 3d tumor model.png