John Garner

Resorbable vascular graft development using PLCL, PLA, and PGA investigated for heart repair

Blog Post created by John Garner on Oct 11, 2016

PolySciTech division of Akina, Inc. ( provides a wide array of biodegradable polymers including PLCL, PLA, and PGA. Recently, researchers have utilized these types of polymers to generate arterial vascular grafts that allow for good cellular growth for use in tissue engineering. This research holds promise for repairing damaged or missing heart tissue. Read more: Sugiura, Tadahisa, Shuhei Tara, Hidetaka Nakayama, Tai Yi, Yong-Ung Lee, Toshihiro Shoji, Christopher K. Breuer, and Toshiharu Shinoka. "Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft." Journal of Vascular Surgery (2016).


“Abstract: Objective: Bioresorbable vascular grafts are biologically active grafts that are entirely reconstituted by host-derived cells through an inflammation-mediated degradation process. Calcification is a detrimental condition that can severely affect graft performance. Therefore, prevention of calcification is of great importance to the success of bioresorbable arterial vascular grafts. The objective of this study was to test whether fast-degrading (FD) bioresorbable arterial grafts with high cellular infiltration will inhibit calcification of grafts. Methods: We created two versions of bioresorbable arterial vascular grafts, slow-degrading (SD) grafts and FD grafts. Both grafts had the same inner layer composed of a 50:50 poly(l-lactic-co-ε-caprolactone) copolymer scaffold. However, the outer layer of SD grafts was composed of poly(l-lactic acid) nanofiber, whereas the outer layer of FD grafts was composed of a combination of poly(l-lactic acid) and polyglycolic acid nanofiber. Both grafts were implanted in 8- to 10-week-old female mice (n = 15 in the SD group, n = 10 in the FD group) as infrarenal aortic interposition conduits. Animals were observed for 8 weeks. Results: von Kossa staining showed calcification in 7 of 12 grafts in the SD group but zero in the FD group (P < .01, χ2 test). The cell number in the outer layer of FD grafts was significantly higher than in the SD grafts (SD, 0.87 ± 0.65 × 103/mm2; FD, 2.65 ± 1.91 × 103/mm2; P = .02). Conclusions: The FD bioresorbable arterial vascular graft with high cellular infiltration into the scaffold inhibited calcification of grafts.”