John Garner

PLGA-PEG-COOH from PolySciTech used in development of nanoparticle targeted delivery system

Blog Post created by John Garner on Oct 9, 2017

Nanoparticle, generic.jpg

Most medicine applied today has no specific targeting system. Most oral formulations and free-drug injections simply flood the entire blood-stream with a medicinal molecule such that the area of action receives enough dose to be therapeutic. This can be problematic in the situation of side-effects. Use of a delivery system, however, can ensure localization of the drug to a specific area. Recently, researchers utilized PLGA-PEG-COOH (PolyVivo AI034) from PolySciTech ( to generate nanoparticles for targeted delivery of propranolol. Typically, propranolol is used to treat high blood pressure in a systemic application. However, with targeted application, it can be applied for treating hemangioma. This research holds promise to find new applications for existing medicines through targeted delivery. Read more: Guo, Xiaonan, Xiaoshuang Zhu, Jie Gao, Dakan Liu, Changxian Dong, and Xing Jin. "PLGA nanoparticles with CD133 aptamers for targeted delivery and sustained release of propranolol to hemangioma." Future Medicine (2017).


  “Aim: To develop propranolol-loaded poly(lactic-co-glycolic acid) nanoparticle with CD133 aptamers (PPN-CD133) to treat infantile hemangioma. Materials & methods: The antihemangioma activity and mechanism of PPN-CD133 were evaluated. Results & conclusion: PPN-CD133 are of desired size (143.7 nm), drug encapsulation efficiency (51.8%) and sustained drug release for 8 days. PPN-CD133 could effectively bind to CD133+ hemangioma stem cells, resulting in enhanced cytotoxic effect and reduced expression of angiogenesis factors in hemangioma stem cells. The therapeutic effect of PPN-CD133 in hemangioma was superior to that of untargeted PPN and propranolol in vivo, as reflected by reduced hemangioma volume, weight and microvessel density. PPN-CD133 represents a very promising approach to locally and efficiently deliver propranolol leading to significant inhibition of infantile hemangioma. Keywords: aptamer, biomaterials, cell biology, controlled release, nanoparticles, remove.”