John Garner

PCL from PolySciTech used in the study of myelination process as part of development of repair mechanisms for neural injuries

Blog Post created by John Garner on Jun 18, 2018

Ong, 2018 microfiber myelination.jpg

Myelination is the process of forming a myelin sheath around a nerve to allow nerve impulses to move more quickly. This must occur for neural tissues to heal missing or damaged connections and does not normally occur easily. This is one of the reasons why nerve damage, such as those caused by spinal cord injuries, is so difficult to heal. Recently, researchers at Nanyang Technological University (Singapore), and The University of Edinburgh (UK) used PCL (PolyVivo AP009) from PolySciTech ( to develop a mesh for growing neural cells. By controlling the conditions and exposure to select RNA sequences, they were able to elucidate some of the processes which lead to Myelination. This research holds promise for improved healing of nerve damage which may be applicable to treating blindness, paralysis, and other nerve-damage based diseases.  Read more: Ong, William, Junquan Lin, Marie E. Bechler, Kai Wang, Mingfeng Wang, and Sing Yian Chew. "Microfiber Drug/Gene Delivery Platform for Study of Myelination." Acta biomaterialia (2018).


“Abstract: Our ability to rescue functional deficits after demyelinating diseases or spinal cord injuries is limited by our lack of understanding of the complex remyelination process, which is crucial to functional recovery. In this study, we developed an electrospun suspended poly(ε-caprolactone) microfiber platform to enable the screening of therapeutics for remyelination. As a proof of concept, this platform employed scaffold-mediated non-viral delivery of a microRNA (miR) cocktail to promote oligodendrocyte precursor cells (OPCs) differentiation and myelination. We observed enhanced OPCs differentiation when the cells were transfected with miR-219 and miR-338 on the microfiber substrates. Moreover, miRs promoted the formation of MBP+ tubular extensions around the suspended fibers, which was indicative of myelination, instead of flat myelin membranes on 2D substrates. In addition, OPCs that were transfected with the cocktail of miRs formed significantly longer and larger amounts of MBP+ extensions. Taken together, these results demonstrate the efficacy of this functional screening platform for understanding myelination. Statement of Significance: The lack of understanding of the complex myelination process has hindered the discovery of effective therapeutic treatments for demyelinating diseases. Hence, in vitro models that enable systematic understanding, visualization and quantification of myelination are valuable. Unfortunately, achieving reproducible in vitro myelination by oligodendrocytes (OLs) remains highly challenging. Here, we engineered a suspended microfiber platform that enables sustained non-viral drug/gene delivery to study OL differentiation and myelination. Sustained drug delivery permits the investigation of OL development, which spans several weeks. We show that promyelinogenic microRNAs promoted OL differentiation and myelination on this platform. Our engineered microfiber substrate could serve as a drug/gene screening platform and facilitate future translation into direct implantable devices for in vivo remyelination purposes. Keywords: Electrospinning, RNA interference, Non-viral gene delivery, Oligodendrocytes, Oligodendrocyte precursor cells, microRNA”


  BPCR conference (August 29, 2018 9AM - 4PM: Kurz Purdue Technology Center, West Lafayette, IN) is a free, 1-day scientific-networking conference hosted by Akina, Inc. See more