John Garner

PLGA from PolySciTech used in development of mixing system for rapid generation of nanoparticles

Blog Post created by John Garner on Nov 14, 2018

MIVM nanoparticles 2018.jpg

Nanoparticles are generally created by a controlled nanoprecipitation of polymer into a non-solvent. There are many different ways to generate nanoparticles which fundamentally differ mostly on how the mixing of polymer solution and non-solvent is accomplished. Recently, researchers at San Jose State University used PLGA (multiple types) from PolySciTech ( to generate nanoparticles by a rapid and inexpensive technique using a 3D printed mixer. This research holds promise to enable rapid and simple creation of PLGA nanoparticles in a cost-effective manner. Read more: Le, Lan, Anuja Bokare, and Folarin Erogbogbo. "Hand Powered, cost effective, 3D printed nanoparticle synthesizer: Effects of polymer end caps, drugs, and solvents on lipid polymer hybrid nanoparticles." Materials Research Express (2018).

“Abstract: Lipid polymer hybrid nanoparticles (LPHNPs) consisting PLGA polymer as a core and DSPE-PEG as a lipid shell have been synthesized by nanoprecipitation method using hand powered, 3D printed Multi Inlet Vortex Mixer (MIVM). This method is relatively fast, simple and cost-effective as compared to other methods used for the synthesis of LPHNPs. Considering the importance of particle size in the nanoparticle mediated drug delivery, synthesis of LPHNPs with desired size has been attempted by examining various formulation variables. The synthesis conditions such as PLGA end caps, amount of drug and the type of organic solvent have been optimized to obtain LPHNPs of desired size. The formation of core-shell like structure of LPHNPs is confirmed by TEM analysis. The resulting LPHNPs were proven to have long term stability and controlled drug release properties.”

Bezwada-brand sale: use BEZWADA40 code to get 40% off Bezwada branded products purchased through PolySciTech.