The tiny packets of chlorophyll that make plants green have been re-engineered in an advance toward transforming plants into bio-factories that make ingredients for medicines, fabrics and fuels. Credit: iStockphoto/Thinkstock |
Scientists are reporting an advance in re-engineering photosynthesis to transform plants into bio-factories that manufacture high-value ingredients for medicines, fabrics, fuels and other products. They report on the research in the journal ACS Synthetic Biology.
Poul Erik Jensen and colleagues explain that photosynthesis does more than transform carbon dioxide and water into sugar and oxygen and generate energy. That process also produces a wealth of natural chemical compounds, many of which have potential uses in medicines and other commercial products. However, evolution has compartmentalized those functions into two separate areas of plant cells. Chloroplasts, the packets of chlorophyll that make plants green, generate energy and produce sugar and oxygen. Another structure, the endoplasmic reticulum, produces a wide range of natural chemicals.
Their report describes breaking that evolutionary compartmentalization by relocating an entire metabolic pathway needed for production of natural bioactive chemicals to the chloroplast. “This opens the avenue for light-driven synthesis of a vast array of other natural chemicals in the chloroplast,” they say, citing key natural chemicals that would be ingredients in medications.
The authors acknowledge funding from the Villum Foundation and the Danish Ministry of Science, Technology and Innovation.
Read the abstract “Redirecting Photosynthetic Reducing Power towards Bioactive Natural Product Synthesis”
From the ACS Office of Public Affairs
“The Nexus Blog” is a sister publication of “The Nexus” newsletter. To sign up for the newsletter, please email gci@acs.org, or if you have an ACS ID, login to your email preferences and select “The Nexus” to subscribe.
To read other posts, go to Green Chemistry: The Nexus Blog home.