By Adelina Voutchkova-Kostal, Director, and Edmond Lam, Assistant Director, ACS Office of Sustainability
In August 2023, the National Science and Technology Council (NSTC) released a report entitled “Sustainable Chemistry Report: Framing the Federal Landscape”. The report, which was mandated by the 2021 “Sustainable Chemistry Research and Development Act” aimed to develop a comprehensive strategy for advancing sustainable chemistry.1 To that end, an interagency strategy team was convened to generate a consensus definition of “sustainable chemistry”, provide a snapshot of sustainable chemistry activities within the U.S. federal government, and attempt to identify critical gaps and activities that federal programs can coordinate to support sustainable chemistry in collaboration with the private sector. The report provides an initial roadmap to guide U.S. federal agencies into a second phase of discussion, which will address guideline implementation.
Definition of “Sustainable Chemistry”. The report defines sustainable chemistry as chemistry that:
As stated, “this includes the intentional design, manufacture, use and end-of-life management of chemicals, materials and products across the lifecycle that do not adversely impact human health and the environment, while promoting circularity, meeting societal needs, contributing to economic resilience and aspiring to perpetually use elements, compounds and materials without depletion of resources or accumulation of waste.”
As a comparison, just prior to the report, the Lowell Center for Sustainable Production, in partnership with Beyond Benign, convened an expert panel that proposed a less technical definition of sustainable chemistry as “the development and application of chemicals, chemical processes, and products that benefit current and future generations without harmful impacts to humans or ecosystems.”2 The accompanying criteria proposed by the group overlap well with criteria identified in the report, with the addition of “transparency”—the need to disclose health, safety, and environmental data, provide open access verification of sustainability claims and chain-of-custody information for chemical and materials. Transparency is critical for enabling quantitative assessments of environmental and health impact. The report also alludes to transparency through its emphasis on data sharing as a catalyst for sustainable innovation.
The need for rational design clearly permeates the definition, emphasizing that design is needed to provide product function, minimize human and environmental hazards, and address end-of-life circularity and management. The lifecycle impact should be considered from sourcing, synthesis or manufacturing, transportation, use, and end-of-life management. The design for circularity is a major challenge that will permeate the research frontiers at the polymer, material, and platform chemical levels. Addressing circularity requires re-designing both the Process and Product, which are mutually dependent. The report also highlights the importance of end-of-life management, which must be considered in concert with the chemical or engineering processes that enable circularity.
How does this compare to the established definition of “green chemistry” and how should we distinguish the use? At first glance, a comparison of the presented definition of sustainable chemistry to the established one of “Green Chemistry” (reduction or elimination of hazardous materials and waste generation over a product lifecycle) suggests the latter focuses more closely on “hazardous waste”. However, the principles of green chemistry that more granularly define the term include energy and material use optimization, use of renewable resources, and circularity by nature in the form of biodegradation. The concept of “circular economy” emerged well after the Twelve Principles of Green Chemistry.3 As such, engineered circularity is not explicitly called for in the Twelve Principles of Green Chemistry. If we consider circular economy principles,4 it becomes more evident that the definition of sustainable chemistry is roughly equivalent to the combined principles of green chemistry and circular economy.
Applying a systems-thinking approach to research to contribute to sustainable chemistry. The report underscores that solutions to sustainability challenges require an appreciation of interconnected systems. The most exciting innovations are emerging at the intersection of fields, such as biology and chemistry, or computer science and chemistry. Meanwhile, in industry, global sustainability goals are reframing corporate strategies, increasing collaboration, transparency, and the willingness to invest in strategies to save energy, minimize material use, and reduce pollution and waste. Advocates are pushing for innovative approaches to chemical manufacturing that minimize impact trade-offs and deliver safer chemicals by design rather than identifying problematic chemicals years after their introduction onto the market.
While this is a high bar to meet for academic research, this “systems approach” is commonplace in industry, where the market success of the product is driven by economics, safety, and performance. The current definition of sustainable chemistry thus calls for scientists from across multiple disciplines to collaborate in developing new chemistry, chemicals, or materials. While working in broad, interdisciplinary teams may be a new paradigm for many academic researchers, it is imperative for progress in chemistry for sustainability. It is also important to note that this does not need to dilute the deep expertise needed to make fundamental advances in their field, but rather complement it with a systems approach that makes the latter advances more likely to meaningfully contribute to sustainability. Thus, we are poised with the question – how can academic researchers adapt and what support is needed to retain productivity in fundamental research while accelerating applications in sustainable chemistry?
What does the report mean for the regular chemist? The report clearly notes that the US economy is a major factor in how far sustainable chemistry activities can proliferate. Implementation of technologies and products requires buy-in from all members of the value chain. Sustainable chemistry technologies need to be competitive with incumbent technologies, improve supply chain resiliency, and be receptive to end users (i.e., high performance to a certain price threshold). A wide spectrum of different research areas are required, ranging from inorganic to organic, analytical, computational, and physical chemistry. Sustainable chemistry is highly relevant to addressing the development of these technologies. The report presents several gaps in sustainable chemistry that will need to be addressed to meet the challenges of protecting the environment, people’s health, economy, and national security of the US.
What is next? Part two of the Sustainable Chemistry Report will be developed through and informed by the engagement of stakeholders, collaborators, and partners that range from researchers and citizen scientists to public health experts, industries, governments, non-governmental organizations, and civil society. The information generated will inform sustainable chemistry standards and metrics, decarbonization, circularity, the use of novel methods for assessing sustainable chemistry, fuel other innovative public health actions, and help the US realize its vision for clean drinking water, clean air, and safe food for all.
References
(1) National Science and Technology Council. Sustainable Chemistry Report: Framing the Federal Landscape, August 2023. https://www.whitehouse.gov/wp-content/uploads/2023/08/NSTC-JCEIPH-SCST-Sustainable-Chemistry-Federal... (accessed 2023-09-26).
(2) Lowell Center for Sustainable Production and Beyond Benign. Expert Committee on Sustainable Chemistry (ECOSChem). Definition and criteria for Sustainable Chemistry: Created by the Expert Committee on Sustainable Chemistry (ECOSChem), February 2023. https://static1.squarespace.com/static/633b3dd6649ed62926ed7271/t/63ed54f40173a27145be7f74/167649816... (accessed 2023-09-26)
(3) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press, 1998.
(4) Velenturf, A.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437-1457.