Upcoming Webinars

cancel
Showing results for 
Search instead for 
Did you mean: 

Upcoming Webinars

X-ray Absorption Spectroscopy (XAS) is a powerful and versatile technique that fits into the larger landscape of material characterization techniques by providing unique, element-specific insights into the local atomic structure, electronic properties, and bonding interactions of materials. It complements and enhances the information obtained from other characterization methods, contributing to a more comprehensive understanding of materials.     In this session, we will discuss the utility of XAS and how newly developed lab-scale instrumentation enables its practical use as an everyday tool for materials characterization. Come see real world applications of laboratory XAS.    Key Learning Objectives: Introduction to X-ray Absorption Spectroscopy and its unique capabilities for materials characterization. Detailed look into example applications of laboratory XAS.  Overview of new lab-scale XAS instrumentation. Understanding the process of conducting a laboratory XAS measurement, including a real-time measurement demonstration.  Who Should Attend: Research Scientists from Universities or Industries that routinely perform materials characterization. Materials Characterization Lab Managers and Users interested in understanding new techniques. Those interested in element-specific, non-destructive material analysis. Brought to you by: Speakers: Dr. Devon Mortensen CEO, easyXAFS Dr. William Holden CTO, easyXAFS Dr. Zachary Lebens-Higgins Testing and R&D Manager, easyXAFS Catherine Dold Health & Environment Writer, C&EN Media Group
%7Bf5943144-ae31-4e7f-b5dd-2921be25a0a4%7D_C_EN_webinar_graphic
Labels (2)
With the rising clinical and commercial successes of AAV-based gene therapies, there is an ever-growing demand for robust, platform analytical technologies that can help ensure better product quality, safety, and efficacy. Size exclusion chromatography (SEC) and Field Flow Fractionation (FFF), coupled with multi-angle light scattering technologies (MALS), are rapidly emerging as transformative technologies for rapid and accurate characterization of AAV samples. Critical Quality Attributes (CQAs) such as capsid titer, genome titer, empty/full, % aggregation and purity of various AAV serotypes can all be obtained in a single measurement. This multi-attribute approach dramatically reduces operational costs and reduces drug development timelines.     Key Learning Objectives: See how SEC-MALS compares to orthogonal techniques (ddPCR, Capsid ELISA’s, and AUC) for the characterization of AAV during various downstream steps   Understand how light scattering can be used as a rapid screening tool when working with multiple AAV serotypes  Appreciate the value of FFF-MALS for accurate, AAV aggregation analysis   Who Should Attend: Academic researchers involved in biophysical studies  Academic researchers involved in gene therapy studies  Gene Therapy - Discovery  Gene Therapy - Development Gene Therapy – QC Government researchers involved in gene therapy research Brought to you by:   Speakers: Steven Milian, M.S. Sr. Staff Scientist, Research & Development Dept. of Patheon (by Thermo Fisher Scientific) Viral Vector Services Gennarino Del Bagno, B.S. Lead Scientist, Research & Development Dept. of Patheon (by Thermo Fisher Scientific) Viral Vector Services Melissa O'Meara Forensic Science Consultant, C&EN Media Group
ACS Webinars Hub Placeholder Image.png
Labels (2)
Thursday, October 19, 2023
Glycosylation plays a crucial role in determining the pharmacological properties of biotherapeutics. The molecular heterogeneity of glycosylated biotherapeutics makes it difficult to provide thorough characterization of intact glycoproteins by mass spectrometry. Current methods for analyzing biotherapeutics only measure fragments of the compound or rely on partial digestion of the glycans to reduce sample complexity. These limitations pose important risks and challenges for biotechnology companies that need to report human-compatible and consistent glycosylation, critical for drug safety and efficacy.     We will present a new approach to glycoform fingerprinting that uses proton-transfer charge-reduction with gas-phase fractionation to analyze intact glycoproteins by mass spectrometry. The method provides a detailed landscape of the intact molecular weights present in biotherapeutic protein preparations in a single experiment and offers insights into glycoform composition when coupled with a suitable bioinformatic strategy. In addition, we highlight the application of charge detection native mass spectrometry (Direct Mass Technology mode) towards the elucidation of masses and aggregation of heterogeneous glycosylated biotherapeutics.    Key Learning Objectives: How to elucidate masses from heterogeneous glycosylated biotheraputics  Learn how proton transfer charge reduction (PTCR) can simplify complex protein mixtures  Learn when to use PTCR based methods compared to Direct Mass Technology mode for analysis of biotherapeutics  Who Should Attend: Laboratory Managers  Biopharmaceutical Researchers  Protein Scientists  Brought to you by: Speakers: Wendy Sandoval Director, Translational Mass Spectrometry, Genentech Ann Thayer Contributing Editor, C&EN Media Group
ACS Webinars Hub Placeholder Image.png
Labels (2)